Seminars will be broadcast online at


Tobias Binder

Kavli IPMU, Tokyo


Yue-Lin Sming Tsai

Institute of Physics, Academia Sinica, Taipei

Detecting a DM lighter than proton: Majorana DM and scalar mediator

join at:

We study a light fermionic weakly interacting massive particle (WIMP) dark matter and its minimal renormalizable model, where it requires a scalar mediator to have an interaction between the WIMP and standard model particles. A comprehensive analysis of the model involving the latest but robust constraints as well as those in the near future is performed. We show that near-future experiments and observations such as low-mass direct dark matter detections, flavor experiments, and CMB observations play important roles to test the model. Still, a wide parameter region will remain even if no WIMP and mediator signals are detected there. Finally, as a future prospect, we propose two directions to further probe such an inaccessible parameter space. The first one is a strongly self-interacting DM (SIDM) scenario if such a WIMP owns features of SIDM but the second one is to detect DM and cosmic ray up-scattering.


Marco Fedele

Universitat de Barcelona

The status of b to s anomalies before Moriond 2020

Flavour Changing Neutral Currents (FCNC) are an excellent probe for the search of New Physics. Therefore, LHCb has put a particular care in the study of B decays mediated by FCNC. Tensions between present data and Standard Model predictions have been found in some of these channels, hinting at a possible violation of Lepton Flavour Universality. I will review the status of these tensions after the results presented last year at Moriond 2019, assessing with particular care the theoretical cleanness of the observables displaying such tensions. Then, I'll discuss the possible explanations for such a pattern of anomalies both within and beyond the Standard Model, employing a model independent EFT framework. Finally, I'll review a possible loop model capable to address such anomalies.