Quantum theory of dark matter scattering

Ayuki Kamada (University of Warsaw)

Based on

AK, Hee Jung Kim and Takumi Kuwahara, JHEP, 2020

AK, Takumi Kuwahara and Ami Patel, JHEP, 2023

AK, Shigeki Matsumoto and Yuki Watanabe, in progress

Apr. 15, 2025 @ HECA seminar

Contents

Dark matter phenomenology

- long-range force
- Sommerfeld enhancement and self-scattering

Scattering theory in quantum mechanics

- Jost function
- effective range theory

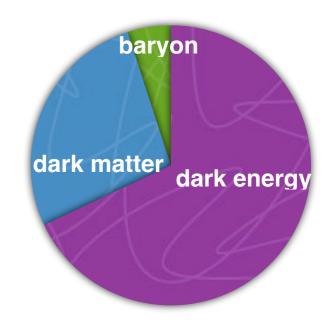
Unitarity

- Omnès solution for Jost function
- violation of Unitarity on zero-energy resonances
- Unitarization

Dark matter

Dark matter

- evident from cosmological observations
 - cosmic microwave background (CMB)...
- one of the biggest mysteries
 - astronomy, cosmology, particle physics...



cosmic energy budget

Long-range force

- mediator lighter than the dark matter
- electroweak-scale or lighter dark matter
 - new dark force (e.g., dark photon)
- TeV-scale dark matter (e.g., weak multiplet)
 - weak force

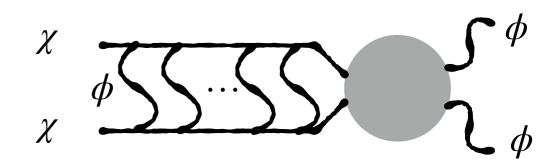
$$V = -\frac{\alpha_{\chi}}{r}e^{-m_{\phi}r}$$

- Yukawa potential

Sommerfeld enhancement

Distortion of wave function

- multiple exchanges of a mediator
- non-perturbative but described by the Schrödinger equation (later)

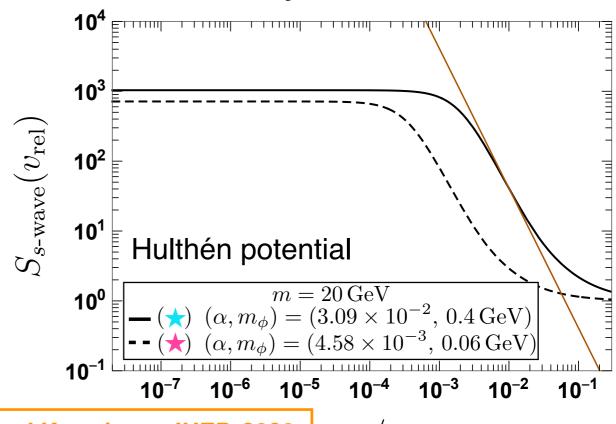


Enhanced annihilation

- annihilation cross section is enhanced at low velocity

$$(\sigma_{\rm ann} v_{\rm rel}) = S(\sigma_{\rm ann}^{(0)} v_{\rm rel})$$
 - without potential

- Sommerfeld enhancement factor
- larger cross section in the late Universe than the thermal one



AK, Kim and Kuwahara, JHEP, 2020

Indirect detection

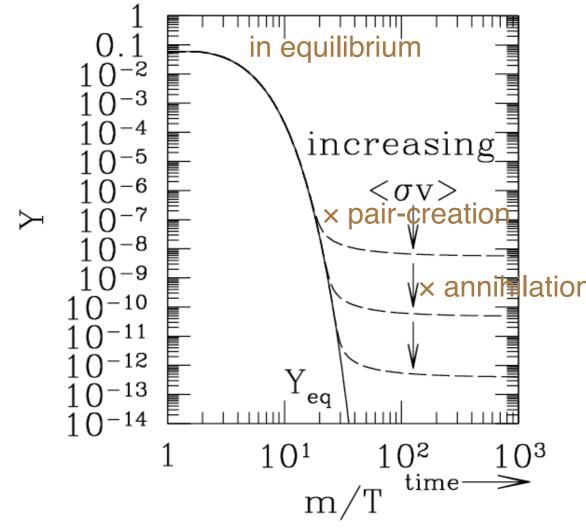
Canonical cross section

- thermal freeze-out (annihilation in the early Universe) $v_{\rm rel} \simeq 1/2$

$$\Omega h^2 = 0.1 \times \frac{3 \times 10^{-26} \,\mathrm{cm}^3/\mathrm{s}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

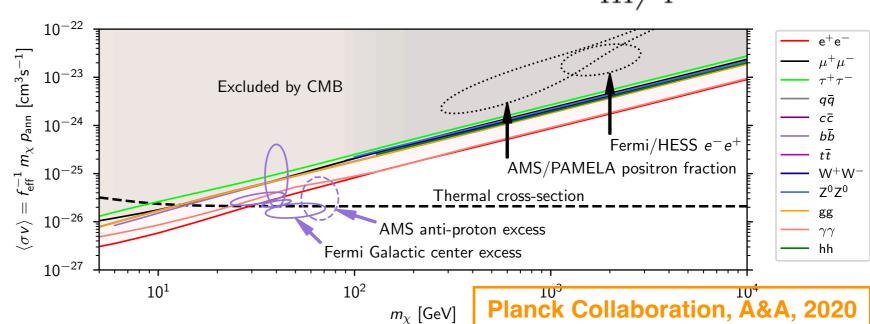
- requires a weak-scale annihilation cross section

$$\langle \sigma_{\rm ann} v \rangle \simeq 1 \, \mathrm{pb} \times c$$



CMB constraints

 energy deposit around the last scattering



Self-scattering

The same light mediator

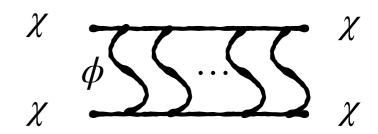
- non-perturbative (infinite exchanges) when the distortion of wave function is significant
- again described by the Schrödinger equation (later)

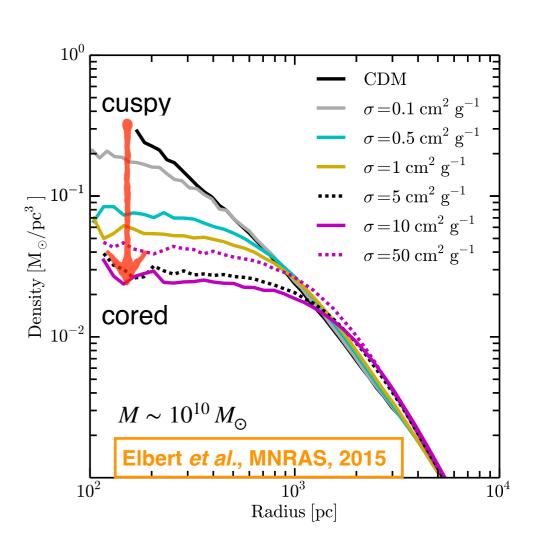
Self-interacting dark matter

- interactions among dark matter particles

$$\sigma/m \sim 1 \text{ cm}^2/\text{g} \sim 1 \text{ barn/GeV}$$

- dark matter density profile inside a halo turns from cuspy to cored





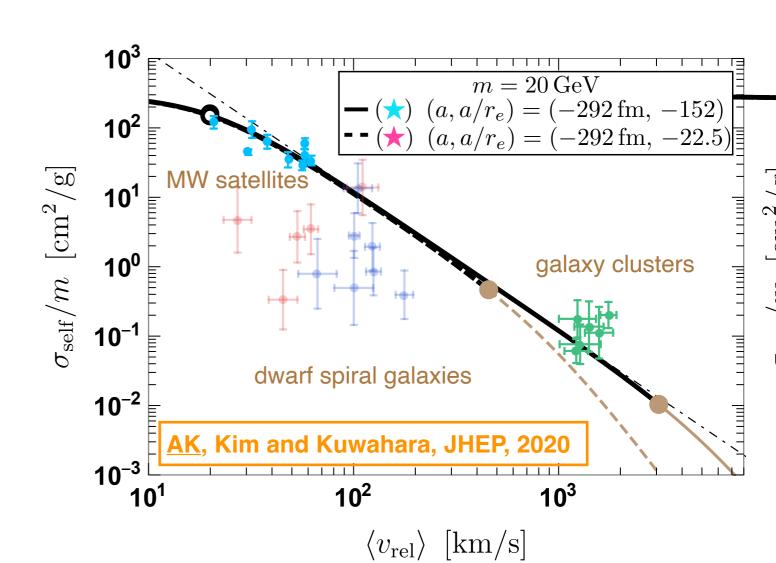
Velocity dependence

Self-interacting dark matter

- cored profile "appear to" provide better fit to astronomical data
- "data" points from astrophysical observations of various size halos

Light mediator

- introduce a velocity dependence, which is compatible with "data"



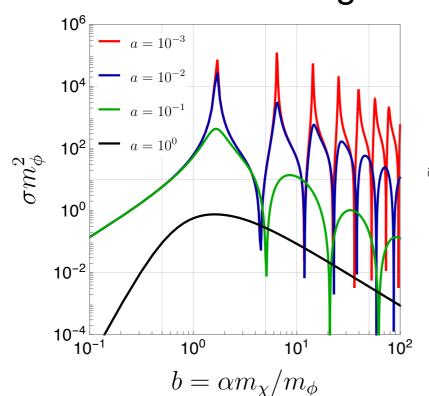
Correlation

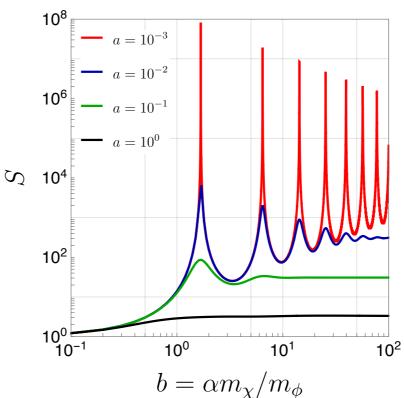
Sommerfeld enhancement and self-scattering

- correlated

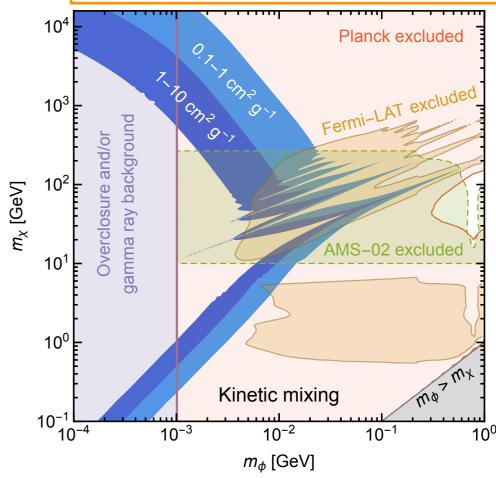
 m_{ϕ}

- resonant enhancement occurs at the same parameter point
 - zero-energy resonances (later)
- main obstacle in SIDM model building





Bringmann, Kahlhoefer, Schmidt- Hoberg and Walia, JHEP, 2020



- dark photon

AK, Kuwahara and Patel, JHEP, 2023

Contents

Scattering theory in quantum mechanics

- Jost function
- effective range theory

Unitarity

- Omnès solution for Jost function
- violation of Unitarity on zero-energy resonances
- Unitarization

Scattering in quantum mechanics

Schrödinger equation

$$\left[-\frac{1}{2\mu}\nabla^2 + V(r)\right]\psi_k(\vec{x}) = E\psi_k(\vec{x}) \qquad E = \frac{k^2}{2\mu}$$
 - potential from long-range force - reduced mass ($\mu = m/2$

Weinberg, "Lectures on **Quantum Mechanics**"

$$k = \mu v_{\rm rel}$$

for identical particle)

- scattering state (energy-eigenstate of Schrödinger equation)

$$\psi_k(\vec{x}) \to e^{ikz} + f(k, \theta) \frac{e^{ikr}}{r} \qquad r \to \infty$$

- (initial) plane wave
 - scattering amplitude
 - out-going spherical wave

Partial-wave decomposition

- motivated by
$$e^{ikz} = \sum_{\ell=0}^{\infty} (2\ell+1)e^{i\frac{1}{2}\ell\pi}j_{\ell}(kr)P_{\ell}(\cos\theta)$$

$$\psi_k(\vec{x}) = \sum_{\ell=0}^{\infty} (2\ell + 1)e^{i\left(\frac{1}{2}\ell\pi + \delta_{\ell}(k)\right)} \frac{1}{k} R_{k,\ell}(r) P_{\ell}(\cos\theta)$$
- phase shift

Sommerfeld enhancement and self-scattering

Scattering phase shift

- radial wave function at infinity

$$R_{k,\ell}(r) \to \frac{\sin(kr - \frac{1}{2}\ell\pi + \delta_{\ell}(k))}{r} \quad r \to \infty$$

$$f(k,\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}(k) P_{\ell}(\cos\theta) \qquad f_{\ell}(k) = \frac{e^{2i\delta_{\ell}(k)} - 1}{2ik}$$

$$\sigma = \sum_{\ell=0}^{\infty} \sigma_{\ell} \qquad \sigma_{\ell} = \frac{4\pi}{k^2} (2\ell + 1) \sin^2 \delta_{\ell}(k) \qquad \text{- diagonalized S-matrix}$$
$$S_{\ell}(k) = e^2$$

$$S_{\ell}(k) = e^{2i\delta_{\ell}(k)}$$

Sommerfeld enhancement

lengo, JHEP, 2009 | Cassel, J.Phys.G, 2010

- radial wave function around the origin
 - annihilation through the contact interaction (delta function potential)

$$S_{\ell}(k) = \left| \frac{R_{k,\ell}(r)}{R_{k,\ell}^{(0)}(r)} \right|^{2} \quad r \to 0$$

without potential

Jost function

How to find $R_{k,\ell}(r)$ in practice?

AK, Kuwahara and

- "initial" condition given at the origin (regularity) AK, Matsumoto and

Watanabe, in progress

$$\mathcal{R}_{k,\ell}(r) \to kj_{\ell}(kr) \approx k \frac{(kr)^{\ell}}{(2\ell+1)!!} \quad r \to 0$$

- radial Schrödinger equation

$$\left[\frac{1}{r^2}\frac{d}{dr}r^2\frac{d}{dr} + k^2 - \frac{\ell(\ell+1)}{r^2} - 2\mu V(r)\right]\mathcal{R}_{k,\ell}(r) = 0$$

asymptotic behavior of solution

$$\mathcal{R}_{k,\ell}(r) \to \frac{i}{2r} \left[\mathcal{J}_{\ell}(k) e^{-i\left(kr - \frac{1}{2}\ell\pi\right)} - \mathcal{J}_{\ell}(-k) e^{i\left(kr - \frac{1}{2}\ell\pi\right)} \right] r \to \infty$$
- Jost function

- by comparing asymptotic behavior

$$R_{k,\ell}(r) = \frac{1}{|\mathcal{J}_{\ell}(k)|} \mathcal{R}_{k,\ell}(r) \quad S_{\ell}(k) = e^{2i\delta_{\ell}(k)} = \frac{\mathcal{J}_{\ell}(-k)}{|\mathcal{J}_{\ell}(k)|} \quad S_{\ell}(k) = \frac{1}{|\mathcal{J}_{\ell}(k)|^2}$$

Correlation

Zero-energy resonances

- resonant enhancement occur

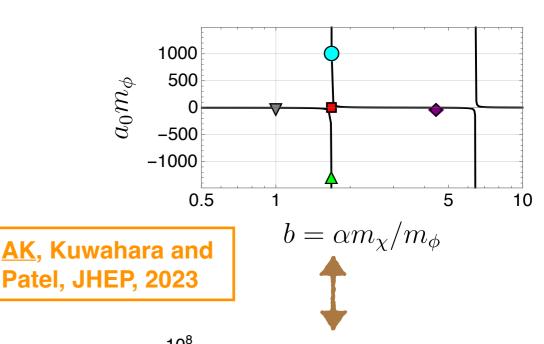
Effective range theory

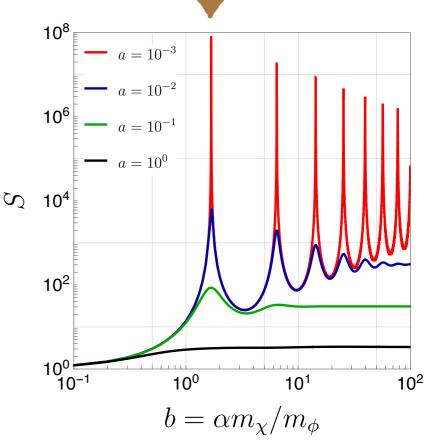
$$k^{2\ell+1} \cot \delta_{\ell} \to -\frac{1}{a_{\ell}^{2\ell+1}} + \frac{1}{2r_{e,\ell}^{2\ell-1}} k^2$$

- scattering length

- effective range

- -shallow virtual level
 - non-normalizable
- -shallow bound state
 - pole of scattering amplitude





Contents

Unitarity

- Omnès solution for Jost function
- violation of Unitarity on zero-energy resonances
- Unitarization

Omnès solution

Annihilation matrix element

AK, Kuwahara and Patel, JHEP, 2023

 $k^2(I)$

- analytic continuation to complex momentum

$$\Gamma_{\ell}(k^2) = \frac{1}{\mathcal{J}_{\ell}(k^2)} = \Omega_{\ell}(k^2) F_{\ell}(k^2)$$

$$\Omega_{\ell}(k^2) = \exp[\omega_{\ell}(k^2)] \qquad \omega_{\ell}(k^2) = \frac{1}{\pi} \int_0^{\infty} dq^2 \frac{\delta_{\ell}(q)}{q^2 - k^2}$$

- reproducing the brunch cut

$$F_{\ell}(k^2) = \prod_{b_{\ell}} \frac{k^2}{k^2 + \kappa_{b,\ell}^2}$$

- rational function reproducing bound-state poles
- numerator is chosen so that no singularity at $k \to 0$
 - discussed next

Omnès solution

Levinson theorem

Weinberg, "Lectures on Quantum Mechanics"

- # of bound states is given by phase shift

normalization

$$\delta_{\ell}(k\to 0) - \delta_{\ell}(k\to \infty) = \left[\#b_{\ell}\left(+\frac{1}{2}\right)\right]\pi \qquad \text{- excluding virtual levels}$$
 - zero in our — only for s-wave zero-

 $k \to 0$ behavior

- Omnès function is singular with the power of # of bound states

$$\operatorname{Re}[\omega_{\ell}(k^{2}+i\epsilon)] = \frac{1}{\pi} \int_{0}^{\infty} dq^{2} \frac{\delta_{\ell}(q)}{q^{2}-k^{2}} \rightarrow -\left[\#b_{\ell}\left(+\frac{1}{2}\right)\right] \ln(k^{2}/\Lambda^{2}) \quad k \to 0$$

$$\Gamma_{\ell}(k^{2}+i\epsilon) = \exp[\omega_{\ell}(k^{2}+i\epsilon)]F_{\ell}(k^{2}) \quad \propto \frac{F_{\ell}(k^{2})}{k^{2\#b_{\ell}(+1)}} \quad k \to 0$$

$$F_{\ell}(k^{2}) = \prod_{b} \frac{k^{2}}{k^{2}+\kappa_{b,\ell}^{2}} \propto k^{2\#b_{\ell}} \quad k \to 0$$

energy resonances

Zero-energy resonances

No cancellation

AK, Kuwahara and Patel, JHEP, 2023

- s-wave 1st resonance $\#b_0 = 0$

$$k \to 0 \quad \text{Re}[\omega_0(k^2 + i\epsilon)] \to -\frac{1}{2}\ln(r_{e,0}^2k^2) \quad \stackrel{\circ}{\sim}$$

- only zero energy "virtual" level $F_0(k^2) = 1$

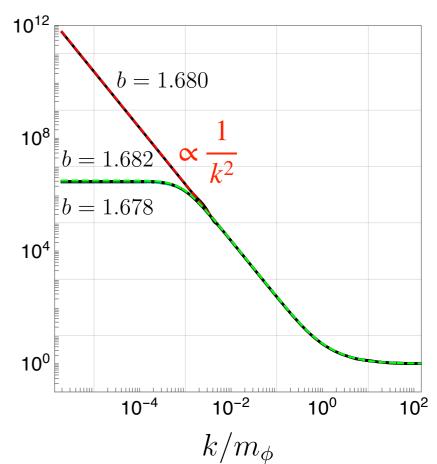
$$k \to 0$$
 $\Gamma_0(k^2) = \exp[\omega_0(k^2)] F_0(k^2) \propto \frac{1}{k}$

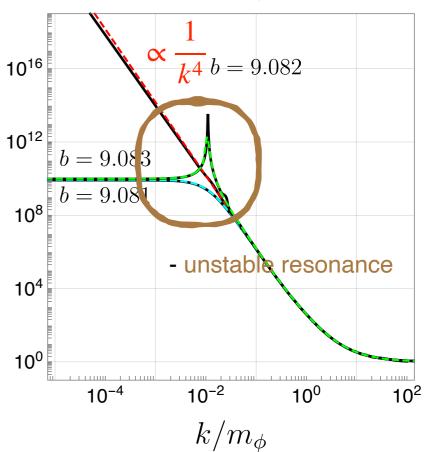
- p-wave 1st resonance $\#b_1 = 1$

$$k \to 0 \text{ Re}[\omega_1(k^2)] \to -\ln(r_{e,1}^2 k^2)$$

- zero energy bound state $F_1(k^2) = \frac{k^2}{k^2} = 1$

$$k \to 0$$
 $\Gamma_1(k^2) = \exp[\omega_1(k^2)]F_1(k^2) \propto \frac{1}{k^2}$





Zero-energy resonances

Unitarity violation

- on s- and p-waves zero-energy resonances, partial-wave Unitarity is violated at low velocity

$$(\sigma_{\ell,\text{ann}} v_{\text{rel}}) = S_{\ell}(\sigma_{\ell,\text{ann}}^{(0)} v_{\text{rel}})$$
 $(\sigma_{\ell,\text{ann}}^{(0)} v_{\text{rel}}) \propto k^{2\ell}$ $(\sigma_{\ell,\text{ann}}^{\text{Uni}} v_{\text{rel}}) = \frac{\pi}{\mu k}$ $S_{0}(k^{2}) \propto \frac{1}{k^{2}}$ $S_{\ell \geq 1}(k^{2}) \propto \frac{1}{k^{4}}$

- because we ignored a contact interaction including $V \supset u\delta^3(\vec{x})$ annihilation when solving the Schrödinger equation

Self-consistent solution

Blum, Sato and Slatyer, JHEP, 2016

- incorporating contact interaction is not as easy as one expects Parikh, Sato and Slatyer, arXiv:2410.18168

AK, Matsumoto and Watanabe, in progress

- mathematical fact: there is no bounded wave function if a potential is singular than the centrifugal one

AK, Matsumoto and Watanabe, in progress

Linear combination of regular and singular solutions

$$\tilde{R}_{k,\ell}(r) = \mathscr{A}_{\ell}(k)\mathscr{R}_{k,\ell}(r) + \mathscr{B}_{\ell}(k)\mathscr{S}_{k,\ell}(r)$$
 - valid except for the origin

- regular solution we discussed before
- singular solution we introduce now

$$\begin{split} \mathcal{S}_{k,\ell}(r) &\to k y_{\ell}(kr) \approx -k \frac{(2\ell-1)!!}{(kr)^{\ell+1}} \quad r \to 0 \\ \\ \mathcal{S}_{k,\ell}(r) &\to -\frac{1}{2r} \left[\mathcal{K}_{\ell}(k) e^{-i\left(kr-\frac{1}{2}\ell\pi\right)} + \mathcal{K}_{\ell}(-k) e^{i\left(kr-\frac{1}{2}\ell\pi\right)} \right] \quad r \to \infty \end{split}$$

- one combination of two unknown coefficients is fixed by requirement of in-coming wave

$$\begin{split} \tilde{R}_{k,\ell}(r) &\to \frac{i}{2r} \left[e^{-i\left(kr - \frac{1}{2}\ell\pi\right)} - S_{\ell}(k) e^{i\left(kr - \frac{1}{2}\ell\pi\right)} \right] \quad r \to \infty \\ \mathcal{A}_{\ell}(k) \mathcal{J}_{\ell}(k) + i\mathcal{B}_{\ell}(k) \mathcal{K}_{\ell}(k) &= 1 \quad S_{\ell}(k) = \frac{\mathcal{J}_{\ell}(-k)}{\mathcal{J}_{\ell}(k)} \left[1 - i\mathcal{B}_{\ell}(k) \mathcal{K}_{\ell}(k) \right] - i\mathcal{B}_{\ell}(k) \mathcal{K}_{\ell}(-k) \end{split}$$

The other combination is fixed by renormalization condition

$$\mathcal{B}_{\ell}(k) = \frac{k^{2\ell+1}}{p_{\ell}(k)\mathcal{J}_{\ell}(k)} \qquad \tilde{R}_{k,\ell}(r) = \mathcal{B}_{\ell}(k) \left(\left[p_{\ell}(k) - k^{2\ell+1} \frac{i\mathcal{K}_{\ell}(k)}{\mathcal{J}_{\ell}(k)} \right] \frac{\mathcal{R}_{k,\ell}(r)}{k^{2\ell+1}} + \mathcal{S}_{k,\ell}(r) \right)$$

- potential has delta-function (contact) term

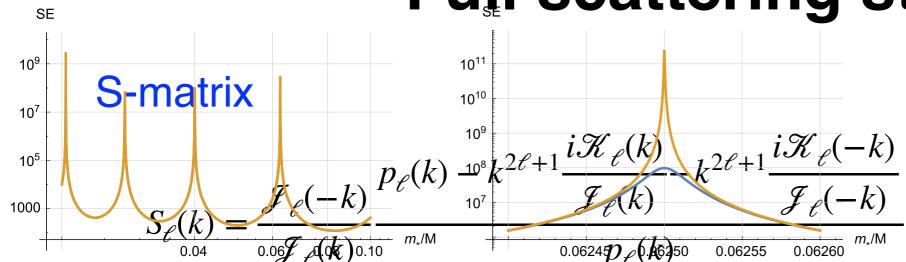
$$V \supset u\delta^3(\vec{x})$$

- kinetic term of singular solution has contact term at the origin

$$\left(-\frac{\nabla^2}{2\mu}\right)\frac{1}{r} = \frac{4\pi}{2\mu}\delta^3(\vec{x})$$

- cancellation between them leads to renormalization condition

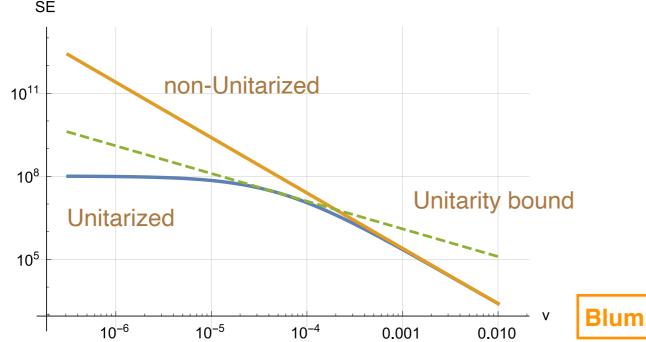
$$\begin{split} p_{\ell}(k) - k^{2\ell+1} \frac{i\mathcal{K}_{\ell}(k)}{\mathcal{J}_{\ell}(k)} + \frac{d^{2\ell+1}}{dr^{2\ell+1}} \left[\frac{(kr)^{\ell}}{(2\ell)!!} r \mathcal{S}_{k,\ell} \right] (0) \\ &= p_{\ell}(k_0) - k_0^{2\ell+1} \frac{i\mathcal{K}_{\ell}(k_0)}{\mathcal{J}_{\ell}(k_0)} + \frac{d^{2\ell+1}}{dr^{2\ell+1}} \left[\frac{(k_0r)^{\ell}}{(2\ell)!!} r \mathcal{S}_{k_0,\ell} \right] (0) \\ &- \text{renormalization scale} \end{split}$$



- by considering large k, one can determine the renormalized constant by UV cross sections

$$\frac{4\pi}{|p_{\ell}(k)|^2} = \frac{\sigma_{\text{sc},0}^{\ell}}{(2\ell+1)k^{4\ell}} \qquad \text{Im} \frac{4\pi}{p_{\ell}(k)} \approx -\frac{\sigma_{\text{ann},0}^{\ell}}{(2\ell+1)k^{2\ell-1}}$$

Unitarized Sommerfeld enhancement factor



Blum, Sato and Slatyer, JHEP, 2016

Bound state with decay width

AK, Matsumoto and Watanabe, in progress

- bound state is a pole of S-matrix
- non-Unitarized S-matrix has a pole at pure imaginary momentum

$$\mathcal{J}_{\ell}(k=i\kappa)=0$$

- one can find the correction to the pole from Unitarized S-matrix by using properties of Jost function

$$Im E_B = -\frac{1}{2(4\pi)} \frac{\sigma_{\text{ann},0}^{\ell} v}{(2\ell+1)p^{2\ell}} \left| \frac{(2\ell+1)!!}{\ell!} \frac{d^{\ell} R_B^{\ell}}{dr^{\ell}} (0) \right|^2$$

$$\operatorname{Re}E_{B} = -\frac{\kappa^{2}}{2\mu} + \frac{1}{2(4\pi)\mu} \eta \sqrt{\frac{4\pi\sigma_{\mathrm{sc},0}^{\ell}}{(2\ell+1)p^{4\ell}} - \left(\frac{\sigma_{\mathrm{ann},0}^{\ell}}{(2\ell+1)p^{2\ell-1}}\right)^{2}} \left| \frac{(2\ell+1)!!}{\ell!} \frac{d^{\ell}R_{B}^{\ell}}{dr^{\ell}}(0) \right|^{2}$$

Summary

Long-range force of dark matter

- Sommerfeld enhancement and self-scattering cross section
 - indirect detection and structure formation
 - they are correlated

This talk

- zero-energy resonances lead to violation of partial-wave Unitarity for s- and p-waves
 - Omnès solution
- Unitarization requires full scattering state incorporating contact interaction
 - renormalization
- Unitarized S-matrix has a bound state pole with decay width

Thank you

Analytic property

Complex momentum squared

$$\Gamma_{\ell}(k^2) = \frac{1}{\mathcal{J}_{\ell}(k^2)}$$

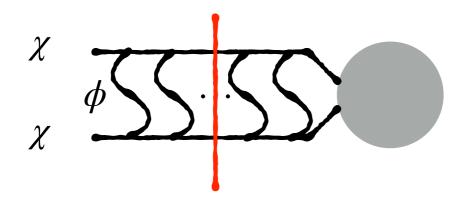
- "real" complex function

$$\Gamma_{\ell}^*(k^2) = \Gamma_{\ell}(k^{2^*})$$

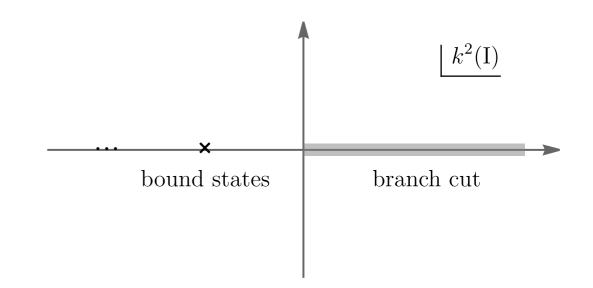
- brach cut along real (physical) axis

$$\Gamma_{\ell}(k^2+i\epsilon)=e^{2i\delta_{\ell}(k)}\Gamma_{\ell}(k^2-i\epsilon)$$
 - real k^2

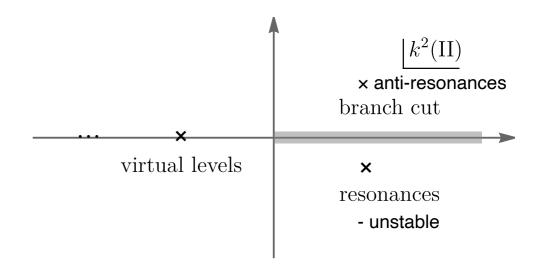
known as Watson theorem
 (kind of optical theorem)



- bound states



- 1st Riemann sheet Im(k) > 0



- 2nd Riemann sheet Im(k) < 0

Omnès solution

Levinson theorem

Weinberg, "Lectures on Quantum Mechanics"

- # of bound states is given by phase shift

$$\delta_{\ell}(k \to 0) - \delta_{\ell}(k \to \infty) = \left\lceil \# b_{\ell} \left(+ \frac{1}{2} \right) \right\rceil \pi$$

- excluding virtual levels

- zero in our normalization
- only for s-wave zeroenergy resonances

- underlying idea
 - consider the system confined in a large sphere si

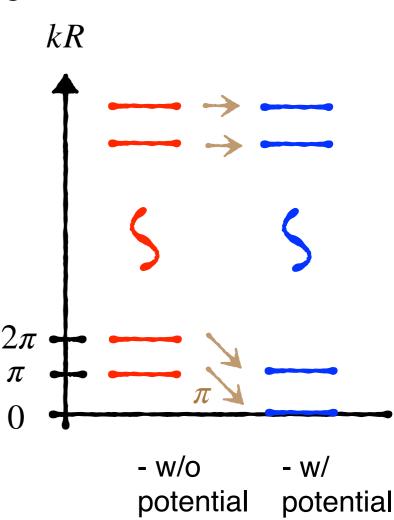
$$R_{k\ell}(r) \to \frac{1}{r}$$

$$kR - \frac{1}{2}\ell\pi + \delta_{\ell} = n\pi$$

$$n = 0, \pm 1, \pm 2...$$

$$k > 0$$

- scattering states are discretized (countable infinity)
- decrease in # of scatteringstates = # of bound states
 - total number does not change

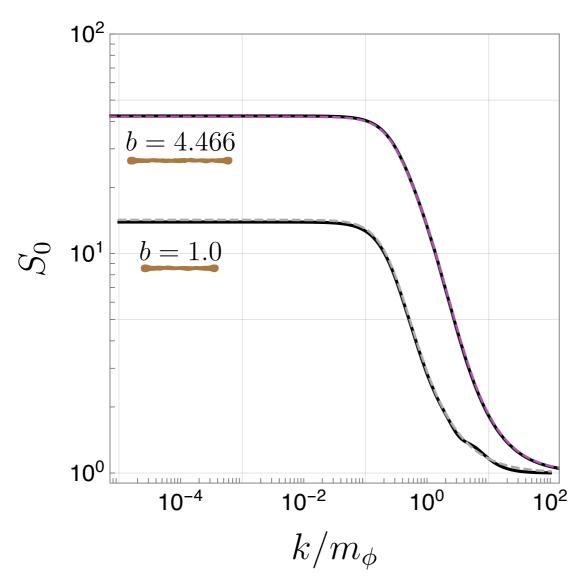


Omnès solution

Yukawa potential

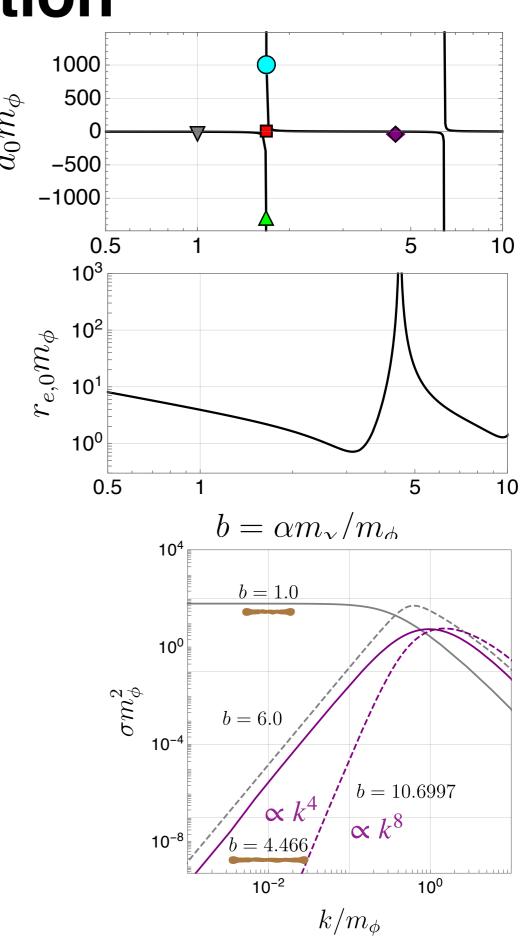
AK, Kuwahara and Patel, JHEP, 2023

- s-wave



- Omnès solution agrees with direct computation from scattering state

- with proper $F_0(k^2)$



Around zero-energy resonances

S-wave

$$\delta_0(k\to 0) = \left[\#b_0\left(+\frac{1}{2}\right)\right]\pi$$

$$k \to 0$$
 Re $[\omega_0(k^2 + i\epsilon)] \to -\frac{1}{2}\ln(r_{e,0}^2k^2)$

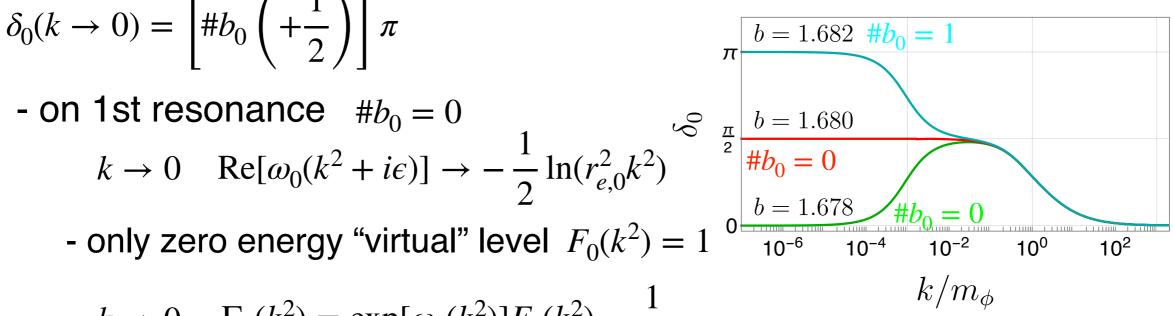
$$k \to 0$$
 $\Gamma_0(k^2) = \exp[\omega_0(k^2)] F_0(k^2) \propto \frac{1}{k}$

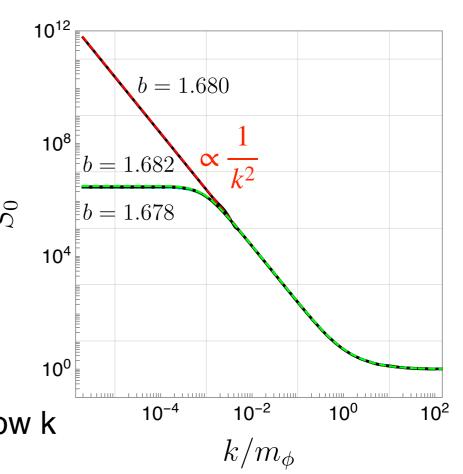
- slightly below the 1st resonance $\#b_0 = 0$
 - no bound state $F_0(k^2) = 1$
- slightly above the 1st resonance $\#b_0 = 1$

$$k \to 0$$
 Re $[\omega_0(k^2 + i\epsilon)] \to -\ln(r_{e,0}^2 k^2)$

 $k \to 0 \quad \text{Re}[\omega_0(k^2+i\epsilon)] \to -\ln(r_{e,0}^2k^2)$ - single bound state $F_0(k^2) = \frac{k^2}{k^2 + \kappa_{b,0}^2}$ $k \to 0 \quad \Gamma_0(k^2) \propto \frac{1}{k^2 + \kappa_{b,0}^2}$ - saturates at low k

AK, Kuwahara and Patel, JHEP, 2023



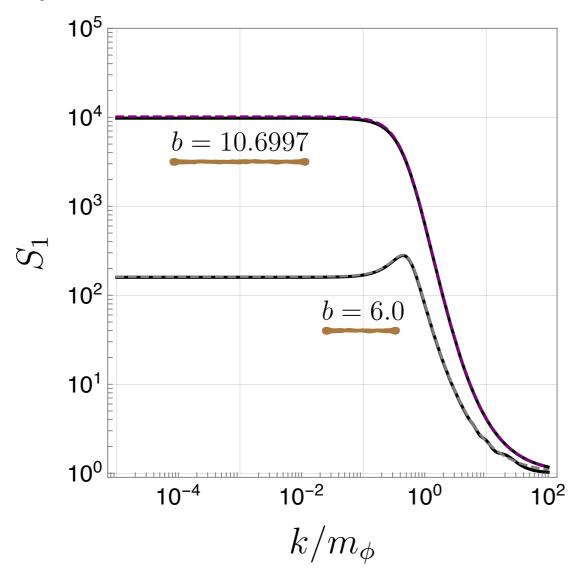


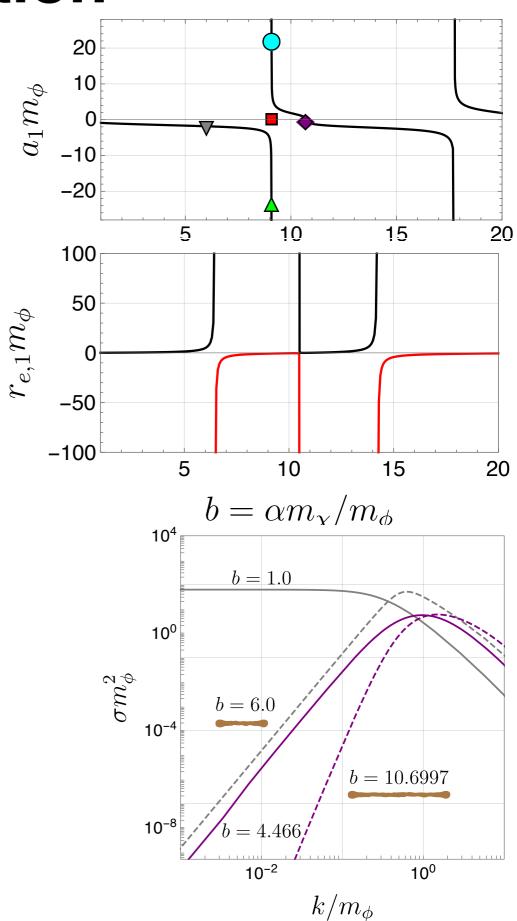
Omnès solution

Yukawa potential

AK, Kuwahara and Patel, JHEP, 2023

- p-wave





Around zero-energy resonances

P-wave

$$\delta_1(k \to 0) = \#b_1\pi$$

- on the 1st resonance $\#b_1 = 1$

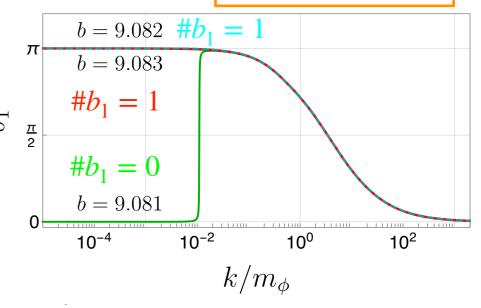
$$k \to 0 \text{ Re}[\omega_1(k^2)] \to -\ln(r_{e,1}^2k^2)$$

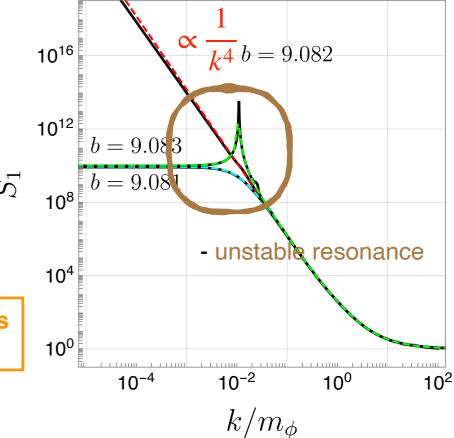
- zero energy bound state $F_1(k^2) = \frac{k^2}{k^2} = 1$

$$k \to 0$$
 $\Gamma_1(k^2) = \exp[\omega_1(k^2)]F_1(k^2) \propto \frac{1}{k^2}$

- slightly below/above the 1st resonance
 - similar to s-wave

Beneke, Binder, De Ros and Grany, JHEP, 2024 AK, Kuwahara and Patel, JHEP, 2023



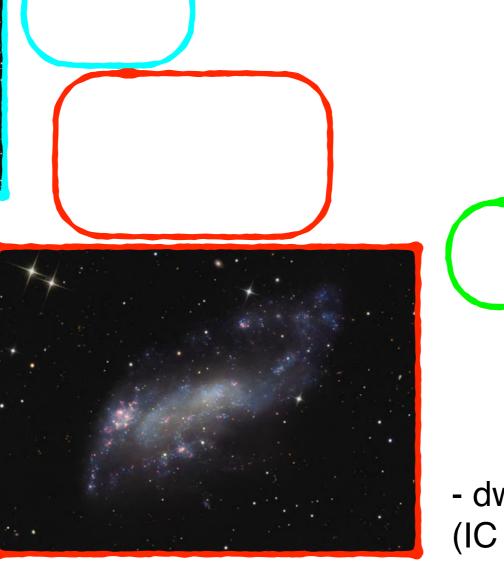


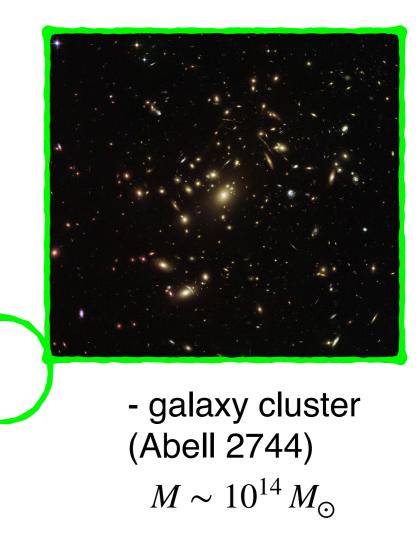
Overview

- cores in various-size halos

- MW satellite(Draco)

 $M_{\rm infall} \sim 10^9 M_{\odot}$

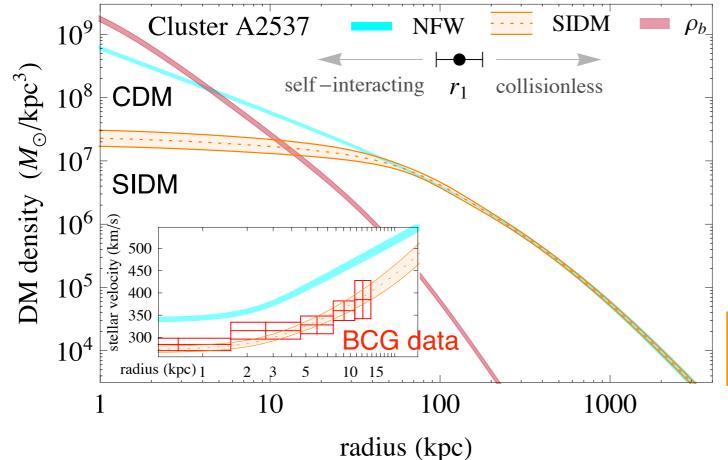




- dwarf spiral galaxy (IC 2574) $M \sim 10^{11} M_{\odot}$

Galaxy clusters

- mass distribution in the outer region is determined by strong/weak gravitational lensing
- stellar kinematics in the central region (brightest cluster galaxies) prefer cored SIDM profile



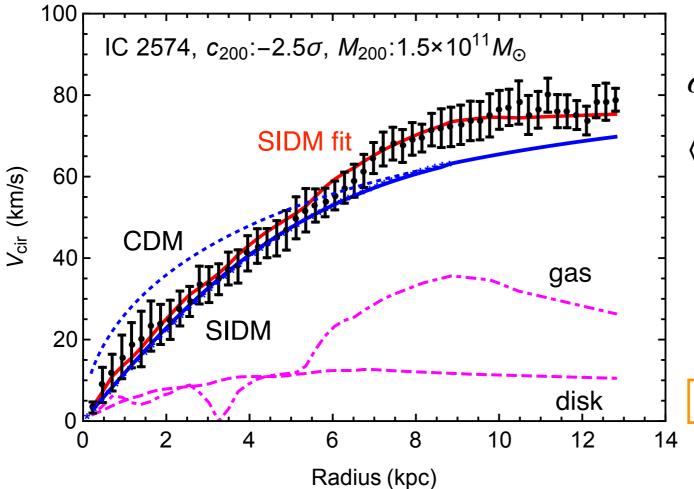
$$\sigma_{\rm self}/m \sim 0.1 \, {\rm cm}^2/{\rm g}$$

 $\langle v_{\rm rel} \rangle \sim 10^3 \, {\rm km/s}$

Kaplinghat, Tulin and Yu, PRL, 2016

Dwarf spiral galaxies

- mass distribution is broadly determined by rotation curves
- rotation velocity in central region (of some galaxies) prefer cored SIDM profile

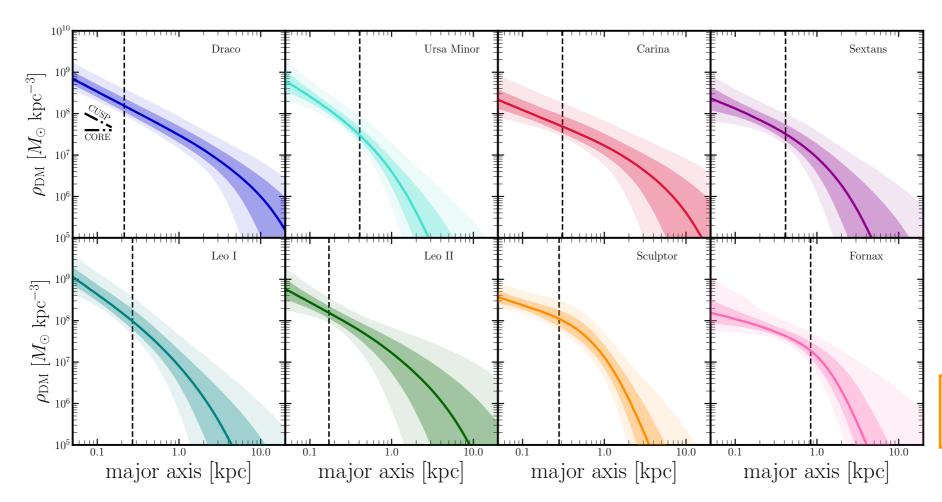


 $\sigma_{\rm self}/m \sim 1 \,\rm cm^2/g$ $\langle v_{\rm rel} \rangle \sim 10^2 \,\rm km/s$

AK, Kaplinghat, Pace and Yu, PRL, 2017

MW satellites

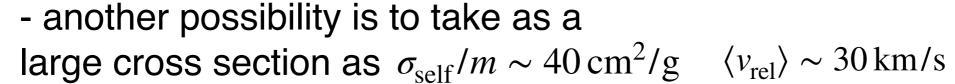
- mass distribution is determined by stellar kinematics
- stellar kinematics in the central region (of some satellites) prefer cuspy CDM profile



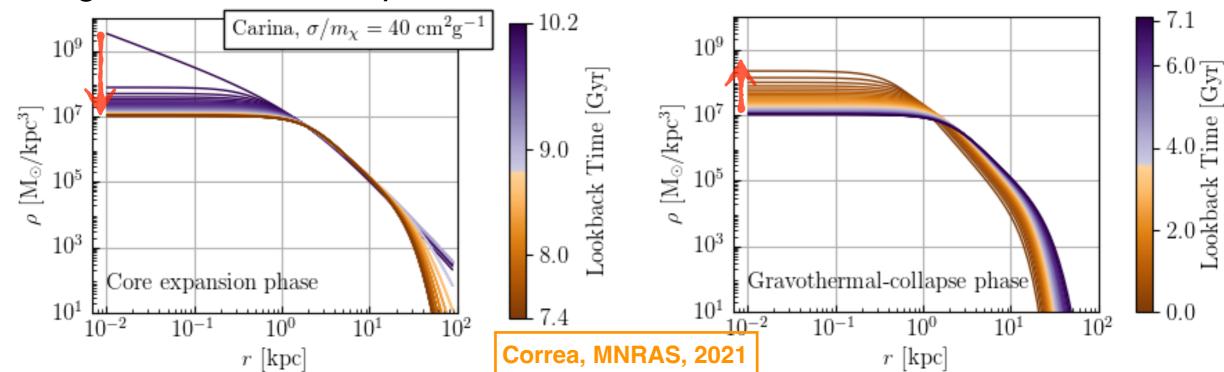
Hayashi, Chiba and Ishiyama, ApJ, 2020

MW satellites

- one possibility is to take as a tiny cross section as $\sigma_{\rm self}/m \simeq 0.01\,{\rm cm^2/g}$
 - $\langle v_{\rm rel} \rangle \sim 30 \,\mathrm{km/s}$



- gravothermal collapse



MW satellites

- gravothermal collapse
 - core shrinks and central density gets higher
 - central density at present is very sensitive to the cross section

