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Motivation | 1

I Cosmological first order phase transitions (FOPT) are a
common feature of particle physics models.

I FOPT are characterized by departure from thermal
equilibrium (third Sakharov condition), thus may provide
a proper environment for electroweak baryogenesis,

I Strong FOPT results in production of primordial
gravitational waves. Observations of GW signal may give
strong constraints on such models and will be possible
soon with LISA.

I Evaluation of the bubble-wall velocity in the stationary
state, which has a crucial impact both on amplitude of
GW signal and baryon asymmetry production, remains to
be one of the most problematic issues.



Cosmological first order phase transitions | 2

Let us consider theory of scalar order
parameter given by Lagrangian density:

L = 1
2(∂µφ)(∂µφ) − V (φ, T ),

leading to the equation of motion in the
form:

∂2φ

∂t2 − ∆φ = dV

dφ
(φ, T ),

where T is temperature.

Space-time constant φ = v with v
corresponding to extrema of the potential
are solutions of the eom.

Scalar potential V (φ)

tunneling
false vacuum

〈φ〉 = 0
true vacuum

〈φ〉 6= 0
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Tunnelling bubbles | 3

Nucleation rate:

Γ(T ) = A(T ) · exp (−S)

For tunnelling in finite temperatures:

S = S3

T
A(T ) = T 4

(
S3

2πT

) 3
2

where S3 is an action of O(3)-symmetric
solution of the eom.
Nucleation condition:

Γ(Tn)
H4 ≈ 1

Nucleation of bubbles

〈φ〉 6= 0

〈φ〉 = 0
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Phase transition parameters | 4

I Critical and nucleation temperatures: Tc, Tn
I Level of supercooling: Tn/Tc
I Transition strength: α ∼ ∆V/ρr

In this work:

αθ̄ = ∆θ̄

3ws
, with θ̄ = ε − p

c2
b

with the speed of sound in the broken phase
cb and model-dependent energy e, pressure
p and enthalpy w.

I Bubble-wall velocity: vw

ΔV V(ϕ,Tn)

V(ϕ,Tc)



Dynamics of the steady state expansion | 5

Integrated eom of the growing bubble:∫
dz

dφ

dz

(
�φ + ∂Veff

∂φ
+
∑
i

dm2
i (φ)

dφ

∫ d3p

(2π)32Ei
δfi(p, x)

)
= 0

ydφ

dz

∂Veff

∂φ
= dVeff

dz
− ∂Veff

∂T

dT

dz

∆Veff =
∫

dz
∂Veff

∂T

dT

dz
−
∑
i

∫
dφ

dm2
i (φ)

dφ

∫ d3p

(2π)32Ei
δfi(p, x)

driving force = hydrodynamic backreaction + non-equilibrium friction

I Boltzmann eq. + eom (different approaches: e.g fluid ansatz)
I LTE approximation (only hydrodynamic backreaction)
I Numerical simulations with effective friction η parametrizing δf



Bag model | 6

Cosmic plasma coexist in two phases:

I Symmetric phase outside the bubble I Broken phase inside the bubble

Equation of state

εs = 3asT
4
s + θs

ps = asT
4
s − θs

εb = 3abT
4
b + θb

pb = abT
4
b − θb

Strength of the transition is defined as

α = θs − θb
εr

∣∣∣∣
T=Tn

.
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Hydrodynamics of bag model | 7

Energy-momentum tensor for the plasma is given by

T µν = wuµuν + gµνp

Conservation of T µν along the flow leads to

∂µ(uµw) − uµ∂µp = 0,

while its projection orthogonal to the flow (with ūµuµ = 0 and ū2 = 1) gives

ūνuµw∂µuν − ūν∂µp = 0.

Hydrodynamic equation

2v

ξ
= γ2(1 − vξ)

[
µ2

c2
s

− 1
]

∂ξv,

with Lorentz-transformed fluid velocity µ(ξ, v) = ξ−v
1−ξv and ξ = r/t.
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Analytic methods for stationary profiles | 8

Hydrodynamic equation

2v

ξ
= γ2(1 − vξ)

[
µ2

c2
s

− 1
]

∂ξv,

Matching equations

1 ω−γ2
−v− = ω+γ2

+v+

2 ω−γ2
−v2

− + p− = ω+γ2
+v2

+ + p+

3 s−γ−v− = s+γ+v+ (if δf = 0)

Bag equation of state

εs = 3asT
4
s + θs

ps = asT
4
s − θs

εb = 3abT
4
b + θb

pb = abT
4
b − θb

Solving hydrodynamic equation with proper
boundary conditions and matching condi-
tions (1 and 2), we get profiles v(ξ) depend-
ing on ξw, α.
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deflagrations hybrids detonations

Adding 3 we can determine the velocity of
the wall vw.



Bubble profiles | 9

deflagration
ξw < cs

hybrid
cJ > ξw > cs

detonation
cJ < ξw

Where Jouget velocity is cJ = 1√
3

1+
√

1+3α2+2α
1+α .



Scalar field coupled to perfect fluid | 10

The system consists of
I relativistic perfect fluid
I real scalar field φ.

The field acquires temperature
dependent effective potential V .

Equation of state

ε(φ, T ) = 3aT 4 + V (φ, T ) − T
∂V

∂T
p(φ, T ) = aT 4 − V (φ, T )

with a = (π2/90)g∗

Energy-momentum tensor

T µν = T µν
field + T µν

fluid

T µν
field = ∂µφ∂νφ − gµν

(1
2∂αφ∂αφ

)
T µν

fluid = wuµuν + gµνp
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Equations of motion | 11

Total energy-momentum tensor in conserved, but both contributions are not, due to
the extra coupling term parametrized by effective friction η

∇µT µν
field = ∂V

∂φ
∂νφ + ηuµ∂µφ∂νφ = −∇µT µν

fluid.

Equation of motion of scalar field

−∂2
t φ + 1

r2 ∂r(r2∂rφ) − ∂V

∂φ
= ηγ(∂tφ + v∂rφ)

Equations of motion of plasma

∂tτ + 1
r2 ∂r(r2(τ + p)v) = ∂V

∂φ
∂tφ + ηγ(∂tφ + v∂rφ)∂tφ,

∂tZ + 1
r2 ∂r

(
r2Zv

)
+ ∂rp = −∂V

∂φ
∂rφ − η(∂tφ + v∂rφ)∂rφ.

where Z := wγ2v and τ := wγ2 − p
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Benchmark potential | 12

For the effective potential V (φ, T ) we use a simple polynomial potential augmented
with high temperature corrections.
Effective potential

V (φ, T ) = 1
2γ(T 2 − T 2

0 )φ2 − 1
3δTφ3 + 1

4λφ4,
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0.5

V(
)

1e6 Scalar potential: M1

Tc = 100 GeV
Tn = 86 GeV

Model T0 γ δ λ Tn α

M1
100√

2
1
18

√
10

72
10
648 86 0.005

M2
100√

2
2
18

√
10

72
5

648 80 0.05
For each model we perform a scan over η,
logarithmicly varying the friction in range:

η/Tc ∈ [0.01, 1]

.



Stationary states | 13

1. Deflagration (ξw = 0.45)

plasma velocity profile
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2. Hybrid (ξw = 0.63)
plasma velocity profile
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3. Detonation (ξw = 0.87)

plasma velocity profile
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Scan over friction η | 16

Model 1: α = 0.005, cJ ≈ 0.63
I Only deflagrations and detonations (no hybrids)
I There is a velocity gap for ξw ∈ (0.57, 0.63)
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Scan over friction η | 17

Model 2: α = 0.05, cJ ≈ 0.73
I All three kinds of solution are possible
I There is a velocity gap for ξw ∈ (0.63, 0.74)
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Dependence on the vacuum expectation value | 18

We randomly sample parameters of the potential and compare different models
resulting with the same Tn/Tc and α.
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Field value in the true vacuum v0 fully determines position of the gap in terms of
friction parameter η.



Dependence on the nucleation temperature | 19

We randomly sample parameters of the potential and compare cases with the same α.

101 102 103

v0η/Tc [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

ξ w

cs

cJ

α = 0.05

0.75

0.80

0.85

0.90

0.95

1.00

T
n
/
T
c

0.0 0.2 0.4 0.6 0.8 1.0

ξw

0.75

0.80

0.85

0.90

0.95

1.00

1.05

T
m
a
x

/
T
c

cs cJ

α = 0.05

0.75

0.80

0.85

0.90

0.95

1.00

T
n
/
T
c

Higher Tn/Tc leads to wider velocity gap.1

1. Krajewski, T., Lewicki, M. & Zych, M. Phys. Rev. D 108, 103523. arXiv: 2303.18216 [astro-ph.CO].

https://arxiv.org/abs/2303.18216
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Results do not strongly depend on α.1

1. Krajewski, T., Lewicki, M. & Zych, M. Phys. Rev. D 108, 103523. arXiv: 2303.18216 [astro-ph.CO].

https://arxiv.org/abs/2303.18216


Constraints on the wall velocity | 21

Possible explanation (in low velocity limit): Hydrodynamical obstruction resulting from
the heating of the plasma in front of the phase transition boundary.2
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ξmaxw =
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with k = 0.2768 ± 0.0055

2. Konstandin, T. & No, J. M. JCAP 02, 008. arXiv: 1011.3735 [hep-ph].

https://arxiv.org/abs/1011.3735


LTE means conservation of entropy | 22

Entropy can be defined using thermodynamical relations

w = ρ + p = Ts, s = ∂p

∂T
.

One can compute

uν∇µT µν
f = T∇µ(suµ) + uµ∇µT

=0︷ ︸︸ ︷
(w/T − ∂T p) −uµ∇µφ∂φp ,

where we used uν∇µuν = 0, uµuµ = 1.
The observation that uν∇µT µν

φ = −uµ∇µφ∂φV = uµ∇µφ∂φp leads us to

∂µ(suµ) = 0,

and the third matching condition3

s−γ−v− = s+γ+v+ .

3. Ai, W.-Y., Laurent, B. & van de Vis, J. JCAP 07, 002. arXiv: 2303.10171 [astro-ph.CO].

https://arxiv.org/abs/2303.10171


Analytic methods for stationary profiles | 23

Hydrodynamic equation

2v

ξ
= γ2(1 − vξ)

[
µ2

c2
s

− 1
]

∂ξv,

Matching equations

1 ω−γ2
−v− = ω+γ2

+v+

2 ω−γ2
−v2

− + p− = ω+γ2
+v2

+ + p+

3 s−γ−v− = s+γ+v+ (if δf = 0)

Bag equation of state

εs = 3asT
4
s + θs

ps = asT
4
s − θs

εb = 3abT
4
b + θb

pb = abT
4
b − θb

Solving hydrodynamic equation with proper
boundary conditions and matching condi-
tions (1 and 2), we get profiles v(ξ) depend-
ing on ξw, α.
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Adding 3 we can determine the velocity of
the wall vw.
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Scalar singlet extension | 24

Model: SM Higgs dublet H and Z2-symmetric real singlet s.
Tree-level potential (unitary gauge):

V0(h, s) = 1
2µ2

hh2 + 1
4λhh4 + 1

4λhsh
2s2 + 1

2µ2
ss

2 + 1
4λss

4

λh = m2
h

2v2 and µ2
h = −λhυ2,

with mh = 125.09 GeV and υ = 246.2 GeV.

free parametres: ms, λs, λhs

Effective potential:

Veff(h, s, T ) = V0(h, s) + VCW(h, s, T ) + VT(h, s, T )

I VCW(h, s, T ) - Coleman-Weinberg potential (here neglected)
I VT(h, s, T ) - thermal potential



Thermal potential | 25

Thermal functions
Jσ(x) = −σ−1

∫ ∞

0
dyy2 log

(
1 − σ exp

(
−
√

y2 + x2
))

High-temperature expansion: (x � 1):

J+1(x) ≈ −π4

45 + π2

12x2 + O(x3) J−1(x) ≈ −7
8

π4

45 + π2

24x2 + O(x4 log x2)

VT =
∑
i

niT
4

2π2 Jσi

(
mi(h, s)

T

)
mi�T≈ −g∗π2

90 T 4 +
∑
i

cini
24 m2

i (h, s)T 2

Effectively tree-level potential with temperature-dependent mass terms
µ2
h(T ) := µ2

h + c2
hT 2 and µ2

s(T ) := µ2
s + c2

sT
2,

c2
h = 1

48
(
9g2 + 3g′2 + 12y2

t + 24λh + 2λhs
)

and c2
s = 1

12 (2λhs + 3λs)



Analytical treatment vs real-time simulations in LTE | 26

0.5 0.6 0.7 0.8 0.9 1.0

Tn/Tc

10−4

10−3

10−2

10−1

100

α
θ̄

matching method

0.0

0.2

0.4

0.6

0.8

1.0

v
m

a
tc

h
w

0.5 0.6 0.7 0.8 0.9 1.0

Tn/Tc

10−4

10−3

10−2

10−1

100

α
θ̄

simulations

0.99 1.0

0.0

0.2

0.4

0.6

0.8

1.0

v
si

m
w

While matching equations predict significant number of stationary deflagrations and
hybrids, in real-time simulations only few indeed evolve towards stationary state.4

4. Krajewski, T., Lewicki, M. & Zych, M. JHEP 05, 011. arXiv: 2402.15408 [astro-ph.CO].

https://arxiv.org/abs/2402.15408
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If the stationary state is achieved for a given model, bubble-wall velocity is very
accurately predicted by the matching equations.4

4. Krajewski, T., Lewicki, M. & Zych, M. JHEP 05, 011. arXiv: 2402.15408 [astro-ph.CO].

https://arxiv.org/abs/2402.15408
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Self-similar profiles: ξ = r/t
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Two possible scenarios4 for the growing bubble in LTE:
I rapid expansion beyond Chapman-Jouguet velocity leading to a runaway scenario,
I evolution toward a stationary state predicted by matching conditions.

4. Krajewski, T., Lewicki, M. & Zych, M. JHEP 05, 011. arXiv: 2402.15408 [astro-ph.CO].

https://arxiv.org/abs/2402.15408
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LTE in the entire system
Assumption of δf = 0 leads to ∂µ(suµ) = 0 and the matching condition:

s−γ−v− = s+γ+v+.

Ballistic approximations
The released laten heat is balanced by the work against the pressure generated by
particles scattered by the wall:

∆V0 = ∆P.

Entropy production
When the entropy is produced ∂µ(suµ) = fs (v, φ, T ), the generalized matching
condition can be introduced:

T+

T−
= γ−

γ+

(
1 + T+∆S

w+γ+v+

)
.
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LTE only away of the wall, but ballistic motion inside the wall5

∆P =
∫

d3p

(2π)3

∑
j∈±1

fj(p)(n·p)2

Ei
θ(−jn·p)

[
Tj(n·p)

(
1−
√

1−j
∆m2

(n·p)2

)
+2Rj(n·p)

]
,

where R and T = 1 − R are reflection and transmission coefficients respectively.

Fully ballistic fluid6

∆P (T, vw) = ρ

3
(1 + vw)2

1 − vw

[
1 − G∆P

(
∆m

T

√
1 − vw
1 + vw

)]
,

where G∆P (x) ≡ (1/4)
(
e−x(2 + 2x + x2) + x2K2(x)

)
with K2 being the modified

Bessel function.
5. Lewicki, M., Vaskonen, V. & Veermäe, H. Phys. Rev. D 106, 103501. arXiv: 2205.05667 [astro-ph.CO].

6. Lewicki, M. et al. Phys. Rev. D 108, 036023. arXiv: 2305.07702 [hep-ph].

https://arxiv.org/abs/2205.05667
https://arxiv.org/abs/2305.07702
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We consider general quadratic potential

V0(φ) = λ

(
η

2v2φ2 − 1 + η

3 vφ3 + 1
4φ4

)
,

so that the local maximum is at φ = ηv and local minimum at φ = v.
The potential energy difference between the vacua is

∆V0 = λv4

12 (1 − 2η) .

As an illustrative example, we include an additional fermionic field with
a field-dependent mass

m2
ψ = y2φ2

which generate the thermal correction to the potential

VT = T 4

2π2 J0

(
yφ

T

)
.
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N -body simulations correctly reproduce the free streaming limit for long mean free
time τ , but due to limitations of the algorithm are not fully consistent with LTE limit
(τ → 0).7

7. Krajewski, T. et al. arXiv: 2411.15094 [hep-ph].

https://arxiv.org/abs/2411.15094
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Entropy production at the bubble front:

∂µ(uµs) = η

T
(uµ∂µφ)2

Integrating over the field profile, we get
generalized 3rd matching equation:8

T−

T+
= γ+

γ−

1
1 + ρ γ+ v+

,

with ρ ≡ ηυ2
0/(3w+Lw).

8. Krajewski, T., Lewicki, M., Nałęcz, I. & Zych, M. arXiv: 2411.16580 [astro-ph.CO].

https://arxiv.org/abs/2411.16580
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New third matching equation allows determining bubble-wall velocity as a function of
η. Detonation branch explains the runaway behaviour in the LTE limit.8

8. Krajewski, T., Lewicki, M., Nałęcz, I. & Zych, M. arXiv: 2411.16580 [astro-ph.CO].

https://arxiv.org/abs/2411.16580
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I We found good agreement between the analytical profiles and our hydrodynamical
numerical results whenever the latter exist.

I The hydrodynamical obstruction preventing the realisation of fast hybrids is very
generic.

I We always find some solutions to be excluded and the gap in solutions becomes
wider as the nucleation temperature predicted by the potential is closer to the
critical one.

I Depending on the non-equilibrium contribution to the friction, walls can be slower
(particles ballistic only inside walls and thermalizing outside) or even faster (free
streaming case) than LTE predictions.

I In order to calculate the terminal velocity, one needs to understand the production
of the entropy on the wall.

Thank you for your attention!
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1 scalar field φ: critical bubble

Fit
φ0(r) = υ0

2

[
1 − tanh

(
r − r0

L

)]
free parameters:
υ0 - initial field amplitude
r0 - bubble radius
L - bubble-wall size

2 plasma temperature T : nucleation temperature Tn

3 plasma velocity v: plasma at rest (v = 0)
Lattice:

δr = 0.01 GeV−1 δt = 0.001 GeV−1 tmax = 120 GeV−1 rmax = ctmax
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