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Motivation

» Cosmological first order phase transitions (FOPT) are a
common feature of particle physics models.

» FOPT are characterized by departure from thermal
equilibrium (third Sakharov condition), thus may provide
a proper environment for electroweak baryogenesis,

» Strong FOPT results in production of primordial
gravitational waves. Observations of GW signal may give
strong constraints on such models and will be possible
soon with LISA.

» Evaluation of the bubble-wall velocity in the stationary
state, which has a crucial impact both on amplitude of
GW signal and baryon asymmetry production, remains to
be one of the most problematic issues.




Cosmological first order phase transitions

Let us consider theory of scalar order
parameter given by Lagrangian density:

L= 2(0,0)@"0) ~ V(6,T)

leading to the equation of motion in the
form:
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where T is temperature.



Cosmological first order phase transitions

Let us consider theory of scalar order
parameter given by Lagrangian density:

L= 2(0,0)@"0) ~ V(6,T)

leading to the equation of motion in the
form:
0? av
Fo_ v

~ 5@

where T is temperature.

Space-time constant ¢ = v with v
corresponding to extrema of the potential
are solutions of the eom.
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Tunnelling bubbles

Nucleation rate:
I(T) = A(T) - exp (= S)

For tunnelling in finite temperatures:
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where S5 is an action of O(3)-symmetric
solution of the eom.
Nucleation condition:
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Nucleation of bubbles



Phase transition parameters

» Critical and nucleation temperatures: 7.7,
» Level of supercooling: 7,,/7.
» Transition strength: o ~ AV/p,

In this work:
Af . . p
a§:3ws, with 926—%

with the speed of sound in the broken phase
¢, and model-dependent energy e, pressure
p and enthalpy w.

» Bubble-wall velocity: v,




Dynamics of the steady state expansion
Integrated eom of the growing bubble:

d oV, d3p
/dzdf <D¢+ H+Z /( soyinE i )>_0

dp OVeg _ dVeg  OVegdT
dz 0¢  dz oT dz

3

OVeg dT
AVig = / d / d / 5£:(p.
fo z oT dZ ¢ )32E f(p )
driving force = hydrodynamic backreaction +  non-equilibrium friction

» Boltzmann eq. + eom (different approaches: e.g fluid ansatz)
» LTE approximation (only hydrodynamic backreaction)
» Numerical simulations with effective friction n parametrizing 0 f



Bag model

Cosmic plasma coexist in two phases:

» Symmetric phase outside the bubble » Broken phase inside the bubble
Equation of state

€s = 3a5Ts4 + 0, € = 3(11,Tg1 + 6,

ps = a,Ty — 0, P = Ty — 6,



Bag model

Cosmic plasma coexist in two phases:

» Symmetric phase outside the bubble » Broken phase inside the bubble
Equation of state
€5 = 3asT + 0, er = 3apTy + Op
ps = a,Ty — 0, P = Ty — 6,
Strength of the transition is defined as
0s — Oy
o=

€& IT=T,




Hydrodynamics of bag model

Energy-momentum tensor for the plasma is given by
™ = wulu” + g"'p
Conservation of T along the flow leads to
Oy (uw) — u,0f'p =0,
while its projection orthogonal to the flow (with @,u* = 0 and u* = 1) gives

wuwiyu, — u”0up = 0.



Hydrodynamics of bag model

Energy-momentum tensor for the plasma is given by
™ = wulu” + g"'p
Conservation of T along the flow leads to
Oy (uw) — u,0f'p =0,
while its projection orthogonal to the flow (with @,u* = 0 and u* = 1) gives
wuwiyu, — u”0up = 0.

Hydrodynamic equation
2

2% = 2(1 — vé) llcé — 1] Ogv,

with Lorentz-transformed fluid velocity p(&,v) = f:g; and £ =r/t.




Analytic methods for stationary profiles 6

Hydrodynamic equation

2

22—) = (1 — vf) l% — 1] Ogv,

S
Matching equations

1 (JJ_"}/%'U_ = w+’yiv+
2 w2 +p. =wiyiel +py

Bag equation of state
€s = ?;asTsfL + 0, € = 3abe + 0y
Ps = asT;L - 65 Py = ale:L - eb

Solving hydrodynamic equation with proper
boundary conditions and matching condi-
tions (1 and 2), we get profiles v(§) depend-

ing on &, a.
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Bubble profiles B

deflagration hybrid detonation
£w<cs cJ>£w>cs CJ<§w

0O Q

. . 2
Where Jouget velocity is c; = \%1*— ylide t9e




Scalar field coupled to perfect fluid

The system consists of
> relativistic perfect fluid
> real scalar field ¢.

The field acquires temperature
dependent effective potential V.

[10



Scalar field coupled to perfect fluid 10
The system consists of Equation of state
> relativistic perfect fluid €6, T) = 3aT*+V(p,T) — Tg_;

> real scalar field ¢.

2 scalar feld & p6.T) = al* ~V(6.T)
The field acquires temperature
dependent effective potential V. with a = (72/90)g,
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Scalar field coupled to perfect fluid

Equation of state

The system consists of
> relativistic perfect fluid €6, T) = 3aT*+V(p,T) — Tg‘;
> real scalar field ¢.
21 scalor field 0 p6.T) = al*~V(6,T)
The field acquires temperature
dependent effective potential V. with a = (72/90)g,

Energy-momentum tensor
T = Tieq + Thuia
17 14 17 1 (63
Thta = 0006 — g ( 50200° )

wyo v v
Thiq = wutu” + ¢"'p



Equations of motion 11

Total energy-momentum tensor in conserved, but both contributions are not, due to
the extra coupling term parametrized by effective friction n

I/
/

aV oy
VTt = 500+ 0,006 = —V, Ty,



Equations of motion
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Total energy-momentum tensor in conserved, but both contributions are not, due to

the extra coupling term parametrized by effective friction n

I/

oV | v
— 0"+ nutd,pd" ¢ = =V, Ty
0]

\Y Téﬁd ()

Equation of motion of scalar field

—0;¢ + 7?23 (r°or¢) — 5 = n7(0¢ + v0,¢)
Equations of motion of plasma
1 ov
O + —50:(r( + p)v) = ¢ =0+ 17(01¢ + v0,0) s,

0T + rizar (rQZv) o= ¢

where Z := wvy?v and 7 := wy? — p

r¢ n(at¢ + 'Uargb) r(b'



vig)

Benchmark potential

For the effective potential V(¢,T") we use a simple polynomial potential augmented
with high temperature corrections.

Effective potential
1 1 1
V(9,T) = 57(T° = T5)¢" = 36T¢° + 76",

1e6 Scalar potential: M,

— Tc =100 Gev MOde| TO Yy

—— Tn =86 GeV

AT, «
10
515 | 86 | 0.005

100 | L
M, | 18
100 | 2 5
Moy 55| = | &B 80 | 0.05
For each model we perform a scan over 7,
p n

logarithmicly varying the friction in range:

ﬂ
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Stationary states
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Stationary states
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Stationary states

0.10

0.08

0.06

0.04 +

0.02 4

0.00 -

3. Detonation (£, = 0.87)

plasma velocity profile

0.2

0.8 1.0

plasma enthalpy profile

1.3

1.2 4

w/wn
[
=
1

1.0

0.9 T T
0.2 0.4 0.6

3

bag model

results of the symulation

0.8

1.0

|15



Scan over friction 7 116

Model 1: a = 0.005, ¢y ~ 0.63
» Only deflagrations and detonations (no hybrids)
» There is a velocity gap for &, € (0.57,0.63)

M : a = 0.005 M : a=0.005
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Scan over friction 7 17

Model 2: o« = 0.05, ¢j = 0.73
> All three kinds of solution are possible
» There is a velocity gap for &, € (0.63,0.74)
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Dependence on the vacuum expectation value 18

We randomly sample parameters of the potential and compare different models
resulting with the same 7,,/7,. and «.

a=0.05, T, = 76752 GeV a=0.05, T, = 92736 GeV
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W W
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Field value in the true vacuum vy fully determines position of the gap in terms of
friction parameter 7.



Dependence on the nucleation temperature 19

We

0.0

1.

randomly sample parameters of the potential and compare cases with the same a.

a =0.05
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Higher 7), /7. leads to wider velocity gap.!

Krajewski, T., Lewicki, M. & Zych, M. 2303.18216 [astro-ph.CO]


https://arxiv.org/abs/2303.18216

Dependence on the nucleation temperature 120

We randomly sample parameters of the potential and compare cases with the same «.

a=0.1 a=0.1
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Results do not strongly depend on «.*

1. Krajewski, T., Lewicki, M. & Zych, M. 2303.18216 [astro-ph.CO]


https://arxiv.org/abs/2303.18216

Constraints on the wall velocity 21

Possible explanation (in low velocity limit): Hydrodynamical obstruction resulting from
the heating of the plasma in front of the phase transition boundary.”

1.0 . 1.0 . .
— a=0.1 fuw=(1—T,/Te)*
0.8 e «a=0.05 2
0.8 N o a=0.1
0.6 T c
06 é =]
\ 0.4 : .
0.4 \ 0.2
0.2 A 0.0
075 0.80 085 090 095  1.00 075 0.80 0.85 090 0.95  1.00
Our fit: Tn/Te Tn/Te

T k
gmas _ (1 - T") with & = 0.2768 % 0.0055

c

2. Konstandin, T. & No, J. M. JCAP 02, 008. arXiv: 1011.3735 [hep-ph].


https://arxiv.org/abs/1011.3735

LTE means conservation of entropy

Entropy can be defined using thermodynamical relations
Ip
w=p+p s, S aT

One can compute .

—~
uZ,VMTJ’f" =TV, (su") +u'V,T (w/T — Orp) —u'V ,$04p

where we used u, V, u” =0, u,u” = 1.
The observation that u, V,T5" = —u"V 00,V = u'V ,¢0yp leads us to

aﬂ(suu) - 07
and the third matching condition?

S_T-V— = S4VY4+V+ .

3. 2303.10171 [astro-ph.CO]


https://arxiv.org/abs/2303.10171

Analytic methods for stationary profiles 23

Hydrodynamic equation

2

22—) = (1 — vf) l% — 1] Ogv,

S
Matching equations

1 (JJ_"}/%'U_ = w+’yiv+
2 w2 +p. =wiyiel +py

Bag equation of state
€s = ?;asTsfL + 0, € = 3abe + 0y
Ps = asT;L - 65 Py = ale:L - eb

Solving hydrodynamic equation with proper
boundary conditions and matching condi-
tions (1 and 2), we get profiles v(§) depend-

ing on &, a.
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Analytic methods for stationary profiles 23

Hydrodynamic equation

2

22—) = (1 — vf) l% — 1] Ogv,

S
Matching equations

1 UJ_"}/%’U_ = W+’Yi’U+

2 w2 +p. =wiyiel +py
3 s_y-v- = sy (if 6f =0)
Bag equation of state

€s = ?;asTsfL + 0, € = 3ang1 + 0y

Ps = asT;L - (95 Py = ale:L - eb

Solving hydrodynamic equation with proper
boundary conditions and matching condi-
tions (1 and 2), we get profiles v(§) depend-

ing on &, a.
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Adding 3 we can determine the velocity of

the wall v,,.



Scalar singlet extension

Model: SM Higgs dublet H and Zs-symmetric real singlet s.
Tree-level potential (unitary gauge):
1 1 1 1 1
Vo(h,s) = §uih2 + Z/\"h4 + Z/\hshz’s2 + 5/@52 + Z/\ss4
2
My
M= 902
with my, = 125.09 GeV and v = 246.2 GeV.

and pE = =\,

‘ free parametres: mg, Ag, Ans

Effective potential:
V:eff(hv S, T) = ‘/O(hv 5) + VCW(h7 5, T) + VT<h7 S, T)

» Vew(h, s, T) - Coleman-Weinberg potential (here neglected)
» Vr(h,s,T) - thermal potential



Thermal potential

Thermal functions

e [t (4757
(x) o . yy* log o exp Y2+

High-temperature expansion: (z < 1):

7.{.4 2 771' 2
Jii(z) = — E—l—fx +O(2%) J_1(z) ~ §Z5+ﬂx + O(2* log 2%)
n;T* mi(h,s)\ mi<T g* cin T2
Vr=2 27r2°]‘”< T > ~ +Z

Effectively tree-level potential with temperature—dependent mass terms
pn(T) = pi + e T% and  p3(T) = pg + 217,

1 1
& = 5 (9g2 + 39" + 12¢2 + 24\, + zAhs) and ¢ = 173 (PAns +34)



Analytical treatment vs real-time simulations in LTE 126

o matching method o simulations
10° 3 10° - 1.0
107 4 107" 4 e 08
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While matching equations predict significant number of stationary deflagrations and
hybrids, in real-time simulations only few indeed evolve towards stationary state.*

4. Krajewski, T., Lewicki, M. & Zych, M. 2402.15408 [astro-ph.CO]


https://arxiv.org/abs/2402.15408

Precision of analytical treatment in LTE E
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S
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§ 0.00
J .

—0.02 T T T
0.35 0.40 0.45 0.50 0.55

match
w

If the stationary state is achieved for a given model, bubble-wall velocity is very
accurately predicted by the matching equations.”

4. Krajewski, T., Lewicki, M. & Zych, M. 2402.15408 [astro-ph.CO]


https://arxiv.org/abs/2402.15408

Evolution of bubbles in LTE

Self-similar profiles: & =/t
0.08

1.0 0.04 1.0
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— simulation 7, prediction — simulation --- prediction
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= ‘1 \ 45
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Two possible scenarios* for the growing bubble in LTE:
> rapid expansion beyond Chapman-Jouguet velocity leading to a runaway scenario,
> evolution toward a stationary state predicted by matching conditions.

4. Krajewski, T., Lewicki, M. & Zych, M. 2402.15408 [astro-ph.CO]


https://arxiv.org/abs/2402.15408

Approaches to non-equilibrium friction

LTE in the entire system
Assumption of ¢ f = 0 leads to J,(su*) = 0 and the matching condition:

S_Y—VU— = S4Y4V4.

Ballistic approximations

The released laten heat is balanced by the work against the pressure generated by

particles scattered by the wall:
AVy = AP.

Entropy production

When the entropy is produced 0, (su*) = f, (v, ¢,T'), the generalized matching
condition can be introduced:

T _ T, AS

I+ _ - (1 i +> ‘

_ vy WY+ V+



Ballistic approximations E

LTE only away of the wall, but ballistic motion inside the wall®

AP—/ s Y )

_]G:I:l L

2

Am?

—jn-p) lﬁ(n-p) (1— e >+2R (n- )] :
(n-p)?

where R and 7 =1 — R are reflection and transmission coefficients respectively.

Fully ballistic fluid®

(1+Uw) _ Am 1_Uw
AP(T’Uw)_3 1 — vy, L= Gar T \14+wv, /|’

where Gap (z) = (1/4) (e7%(2 + 2z + 2?) + 22 K»(x)) with K5 being the modified
Bessel function.

5. Lewicki, M., Vaskonen, V. & Veermae, H. 2205.05667 [astro-ph.CO]
6. Lewicki, M. et al. 2305.07702 [hep-phl


https://arxiv.org/abs/2205.05667
https://arxiv.org/abs/2305.07702

Toy model

We consider general quadratic potential
n
V(@) = A (326 - T ugt + 16t)

so that the local maximum is at ¢ = nv and Iocal minimum at ¢ = v.
The potential energy difference between the vacua is

vt
AVy = 1-2
0 19 —— n) .
As an illustrative example, we include an additional fermionic field with

a field-dependent mass

1+77

2 2,2
My =Y ¢
which generate the thermal correction to the potential

T (yo
VT - ﬁjo (T) .



Plasma profiles in ballistic simulations
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Thermalization in N-body simulations E

gk

1
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N-body simulations correctly reproduce the free streaming limit for long mean free
time 7, but due to limitations of the algorithm are not fully consistent with LTE limit
(r —0).f

7.

Krajewski, T. et al.

2411.15094 [hep-ph]


https://arxiv.org/abs/2411.15094

Comparison of ballistic method with LTE

Am/T

Am/T

LTE

y

'
3 (Fully ballistic

0.1
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Effective friction term 38

Entropy production at the bubble front:

Ui 2

u(u's) = f(“uauﬁs) 1071 o .
Integrating over the field profile, we get < if
generalized 3rd matching equation:® 10-3 - E’

z

T N Y+ 1

Ty v l+pysvg’ 10-5 ,
with p = nv3/(3wy Ly,). 1072 arre acriy 1071

8. Krajewski, T., Lewicki, M., Natecz, |. & Zych, M. 2411.16580 [astro-ph.CO]


https://arxiv.org/abs/2411.16580

Analytical treatment vs real-time simulations (7 # 0) 136

Benchmark 1 Benchmark 2
1.0 A deflagrations 1.0 A ety detonations  deflagrations
— exact — exact — exact
approx approx approx
0.8 o % hydrodynamic simulations 0.8 % hydrodynamic simulations
0.6 0.6 vy
3 LTE 3
2 Uy,
0.4 0.4 -
0.2 H 0.2 4
0.0 o) 00— e
1073 107% 1072 107! 10° 10t 102

n/Te

New third matching equation allows determining bubble-wall velocity as a function of
n. Detonation branch explains the runaway behaviour in the LTE limit.®

8. Krajewski, T., Lewicki, M., Natecz, |. & Zych, M. 2411.16580 [astro-ph.CO]


https://arxiv.org/abs/2411.16580

Summary

| 2

| 2

| 2

We found good agreement between the analytical profiles and our hydrodynamical
numerical results whenever the latter exist.

The hydrodynamical obstruction preventing the realisation of fast hybrids is very
generic.

We always find some solutions to be excluded and the gap in solutions becomes
wider as the nucleation temperature predicted by the potential is closer to the
critical one.

Depending on the non-equilibrium contribution to the friction, walls can be slower
(particles ballistic only inside walls and thermalizing outside) or even faster (free
streaming case) than LTE predictions.

In order to calculate the terminal velocity, one needs to understand the production
of the entropy on the wall.



Summary

> We found good agreement between the analytical profiles and our hydrodynamical
numerical results whenever the latter exist.

» The hydrodynamical obstruction preventing the realisation of fast hybrids is very
generic.

> We always find some solutions to be excluded and the gap in solutions becomes
wider as the nucleation temperature predicted by the potential is closer to the
critical one.

» Depending on the non-equilibrium contribution to the friction, walls can be slower
(particles ballistic only inside walls and thermalizing outside) or even faster (free
streaming case) than LTE predictions.

> In order to calculate the terminal velocity, one needs to understand the production
of the entropy on the wall.

Thank you for your attention!




Initial conditions

1 scalar field ¢: critical bubble

—— thin-wall approximation

--- Numerical profile F
140 It

¢o(r) = % {1 — tanh (T LTO)}

free parameters:

Vg - initial field amplitude
ro - bubble radius

L - bubble-wall size

2 plasma temperature 7": nucleation temperature T,,
3 plasma velocity v: plasma at rest (v = 0)
Lattice:
6r =0.01 GeV™' 5t =0.001 GeV ™' 0, = 120 GeV ™!

Tmaz = Ctmaz
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