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* recipe for a falsifiable and predictive quantum gravity theory:
1. set up quantum theory of gravity and matter (at least SM)
2. simultaneously confront the theory with as much available theory
constraints (unitarity, causality, ...) and experimental data

(cosmological evolution, particle masses, GWSs...) as possible

3. If consistent with experiment, only then move on to the “big
questions”: black holes, big bang, ...

e today: focus on step 1a, be as conservative as possible
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Running coupling constants

» established experimental fact: coupling constants “run with energy”

* measure scattering cross sections and compare them to theoretical
predictions - coupling “constants” depend on energy scale dictated by
their beta functions - renormalisation group

e Quo vadis, quantum gravity?
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Renormalisation Iin gravity

“standard” renormalisation via perturbation theory

apply to gravity:

1
SGR _ d4 —
167TGN / . gR

mass dimension of coupling is negative, indicates perturbative non-
renormalisability

Gn| = —2

the actual problem: predictivity
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Renormalisation Iin gravity

* due to negative mass dimension, each loop order needs new
counterterms not of the form of the original action

* one loop:
1

AI’;LOOP X — /d4CE \V/ —¢ [a/Kf+ bR/R,., + c€
€

1

topological in d=4
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Renormalisation Iin gravity

* due to negative mass dimension, each loop order needs new
counterterms not of the form of the original action

* one loop: GR is on-shell finite! (fails with matter)

e two loops: 1
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Renormalisation Iin gravity

* due to negative mass dimension, each loop order needs new
counterterms not of the form of the original action

* one loop: GR is on-shell finite! (fails with matter)

e two loops:
2-loops 1 4 - [~ po TW 3%
P Goroff, Sagnotti ’‘85, ‘86
a # O van de Ven ‘92
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Renormalisation Iin gravity

due to negative mass dimension, each loop order needs new
counterterms not of the form of the original action

one loop: GR is on-shell finite! (fails with matter)
two loops: new free parameter

higher loops: likely more free parameters at every order

— GR is perturbatively non-renormalisable

Is GR non-perturbatively renormalisable?
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(aka non-perturbative renormalisability)
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investigate behaviour of RG flow around fixed point

critical exponents: positive is “bad” (“relevant”, needs measurement),
negative is “good” (“irrelevant”, fixed by fixed point)
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Asymptotic Safety

e conditions:
 all beta functions vanish at non-vanishing value of couplings (finiteness)
* only finitely many couplings are relevant (predictivity)

e you also want unitarity, causality, compatibility with IR physics
(observations/experiments), ...

e tool: Functional Renormalisation Group (FRG)
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Asymptotic Safety via FRG

* Wilsonian idea of integrating out modes shell by shell

* governed by exact non-perturbative RG equation:
! (2) -
kakrk — §STI' (Fk —I— 9%]{) ]{fak%k Wetterich ‘93

* no free lunch: requires approximation
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Field redefinitions

observables like scattering amplitudes cannot depend on our technical
choices

in particular: can redefine fields, but conditions apply

different choices of field redefinitions give rise to different schemes,
moves momentum dependence in scattering amplitude between different
diagrams

couplings that can be removed by field redefinitions: inessential

2\

s— [as 20,00, om0
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Minimal essential scheme

 minimal essential scheme (MES): set everything to zero that you can set to

zero by suitable field redefinition
Baldazzi, Ben Ali Zinati, Falls

2105.11482
Baldazzi, Falls
2107.00671
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Minimal essential scheme

 minimal essential scheme (MES): set everything to zero that you can set to

zero by suitable field redefinition
Baldazzi, Ben Ali Zinati, Falls

2105.11482
* have to make assumptions on spectrum of theory: Balazzi, Falls

2107.00671
* [GR]: propagator only has massless pole
o [Stelle]: propagator has spectrum of Stelle gravity

* In theory with given spectrum, can put propagator into tree-level form

BK 2311.12097
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Field redefinitions in AS

implication for Asymptotic Safety: only essential couplings need a fixed
point!

running field redefinition - modification of flow equation

1 —1
kO, + W o F'gﬁl) — §Tr (Fg) + %k) {k@k -+ 2\11561)} R

Pawlowski hep-th/0512261; Baldazzi, Ben Ali Zinati, Falls 2105.11482

plan for the rest of the talk: span action by essential operators only and
investigate AS
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Two-loop counterterm

e approximation:

B 1
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e CC technically inessential, but needed for consistency at finite k

A. Baldazzi, K. Falls, Y. Kluth, BK 2312.03831
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Two-loop counterterm

(i iamuan—

gr = 0364, grs =4.490-10""

EN |

§; = 2.225. By = —3.850

i = —0.996

stable under successive improvement of approximation compatible with “standard” scheme

AS tames the two-loop counterterm!

see also H. Gies, BK, S. Lippoldt, F. Saueressig 1601.01800

A. Baldazzi, K. Falls, Y. Kluth, BK 2312.03831
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Other results

e graviton propagator ) 1
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Other results

e graviton propagator
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Other results

e graviton propagator
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e gravity+shift-symmetric scalar
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Summary

e quantisation of gravity as QFT is possible, but there is a price to pay: non-
perturbativity

» field redefinitions can make computations simpler - disentangle inessential
couplings from RG flow

* AS can tame the two-loop counterterm - non-trivial test
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Abstract and goal

The formulation of a consistent theory of quantum gravity is one of the most outstanding and pressing
unsolved problems in theoretical physics, which has aroused interest since the middle of the last century. In the
last decades, there have been several interesting developments, and promising novel ideas have been
proposed, ranging from effective field theory approaches to ultraviolet complete theories. The main objective of
this Nordita Scientific Program is to assess our current understanding of the interplay between gravity and
quantum physics by addressing central questions, contrasting different approaches, and permitting a genuine
exchange of ideas. In addition to focusing on formal aspects of several quantum gravity approaches, their
applications in the context of cosmology and black hole physics will be discussed. The program is structured
as follows:

e Week 1: PhD School "Towards Quantum Gravity" (topics: Perturbative quantum gravity, Effective field
theory, Non-perturbative renormalisation group, String theory, Quantum cosmology, and Quantum black
holes)

e Week 2: Workshop on Formal Aspects and Consistency of Quantum Gravity Approaches, part |

e Week 3: Workshop on Formal Aspects and Consistency of Quantum Gravity Approaches, part ||

e Week 4: Workshop on Quantum Gravity Phenomenology

During the workshop, individual talks will be complemented by discussion sessions that will help to make the
event more interactive and productive, so as to become the source of constructive debates and new insights
towards a deeper understanding of gravitational physics at fundamental scales.

Talks are by invitation only.



