Weakly coupled asymptotic safety up to four loops

Tom Steudtner

Technische Universität Dortmund

in collaboration with Daniel Litim, Nahzaan Riyaz, Emmanuel Stamou

[2307.08747], [ongoing work]

NCBJ Seminar, October 24th, 2023

Outline

- I. Motivation
- II. Litim-Sannino Model
- III. Computation
- IV. UV Conformal Window

1

 $\ln \mu$

1

 $\ln \mu$

- \rightarrow "UV complete": well defined at high energies
- \rightarrow theory remains predictive
- \rightarrow UV regime is perturbative!

- \rightarrow "UV complete": well defined at high energies
- \rightarrow theory remains predictive
- \rightarrow UV regime is perturbative!

» Generalisation: Asymptotic Safety [Weinberg (1980)]

» QCD: Asymptotic Freedom [Gross,Wilczek,Politzer, (1971)]

- \rightarrow "UV complete": well defined at high energies
- \rightarrow theory remains predictive
- \rightarrow UV regime is perturbative!

- » Generalisation: Asymptotic Safety [Weinberg (1980)]
 → "exotic"
 - \rightarrow known reliable examples away from d=4
 - \rightarrow Perturbation theory? Strongly coupled?

» QCD: Asymptotic Freedom [Gross,Wilczek,Politzer, (1971)]

- \rightarrow "UV complete": well defined at high energies
- \rightarrow theory remains predictive
- \rightarrow UV regime is perturbative!

- » Generalisation: Asymptotic Safety [Weinberg (1980)]
 → "exotic"
 - \rightarrow known reliable examples away from d=4
 - \rightarrow Perturbation theory? Strongly coupled?

Wish list: 4d, weakly coupled, renormalizable

» scalars, fermions, gauge bosons

» charged matter beyond AF

» non-abelian gauge, Yukawa interactions, scalar self-interactions

[Bond, Litim 2016 & 2018]

» scalars, fermions, gauge bosons

» charged matter beyond AF

» non-abelian gauge, Yukawa interactions, scalar self-interactions

[Bond, Litim 2016 & 2018]

Still difficult to find an actual QFT! Perturbative reliability?

» scalars, fermions, gauge bosons

» charged matter beyond AF

» non-abelian gauge, Yukawa interactions, scalar self-interactions

[Bond, Litim 2016 & 2018]

Still difficult to find an actual QFT! Perturbative reliability?

→ known examples are variants of the Litim-Sannino model (or equivalent theories)

[Litim, Sannino 2014, 2015]

» scalars, fermions, gauge bosons

- » charged matter beyond AF
- » non-abelian gauge, Yukawa interactions, scalar self-interactions

[Bond, Litim 2016 & 2018]

Still difficult to find an actual QFT! Perturbative reliability?

→ known examples are variants of the Litim-Sannino model (or equivalent theories)

[Litim, Sannino 2014, 2015]

→ at (Veneziano) large Nf,Nc there is strict perturbative control UV FP guaranteed to exist to all orders in perturbation theory!

» scalars, fermions, gauge bosons

- » charged matter beyond AF
- » non-abelian gauge, Yukawa interactions, scalar self-interactions

[Bond, Litim 2016 & 2018]

Still difficult to find an actual QFT! Perturbative reliability?

→ known examples are variants of the Litim-Sannino model (or equivalent theories)

```
[Litim, Sannino 2014, 2015]
```

- \rightarrow at (Veneziano) large Nf,Nc there is strict perturbative control UV FP guaranteed to exist to all orders in perturbation theory!
- \rightarrow 3 families of QFTs, all equivalent in Veneziano limit (triality) [Bond, Litim, TS 2019]

$SU(N_c)$	$SO(N_c)$ or $Sp(N_c)$
Dirac, (LiSa)	Majorana fermions

» scalars, fermions, gauge bosons

- » charged matter beyond AF
- » non-abelian gauge, Yukawa interactions, scalar self-interactions

[Bond, Litim 2016 & 2018]

Still difficult to find an actual QFT! Perturbative reliability?

→ known examples are variants of the Litim-Sannino model (or equivalent theories)

```
[Litim, Sannino 2014, 2015]
```

- \rightarrow at (Veneziano) large Nf,Nc there is strict perturbative control UV FP guaranteed to exist to all orders in perturbation theory!
- \rightarrow 3 families of QFTs, all equivalent in Veneziano limit (triality) [Bond, Litim, TS 2019]

$SU(N_c)$	$SO(N_c)$ or $Sp(N_c)$
Dirac, (LiSa)	Majorana fermions

 \rightarrow no other simple theories under strict perturbative control [TS 2020 (PhD thesis)]

II. Litim-Sannino Model

Field		$SU(N_c)$	$U_L(N_f)$	$U_R(N_f)$
'Quarks'	ψ_L	N_c	N_{f}	1
	ψ_R	N_c	1	N_{f}
'complex Meson'	ϕ	1	N_{f}	$\overline{N_f}$

Field		$SU(N_c)$	$U_L(N_f)$	$U_R(N_f)$
'Quarks'	ψ_L	N_c	N_{f}	1
	ψ_R	N_c	1	N_{f}
'complex Meson'	ϕ	1	N_{f}	$\overline{N_f}$

Field		$SU(N_c)$	$U_L(N_f)$	$U_R(N_f)$
'Quarks'	ψ_L	N_c	N_{f}	1
	ψ_R	N_c	1	N_{f}
'complex Meson'	ϕ	1	N_{f}	$\overline{N_f}$

 \rightarrow interacting fixed points under perturbative control

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = {\rm const.}$ » introduce 't Hooft couplings:

$$\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2} \qquad \qquad \alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = {\rm const.}$ » introduce 't Hooft couplings:

$$\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}$$

» small and tunable expansion parameter:

$$\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$
$$\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad \qquad -\frac{11}{2} < \epsilon < \infty$$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}$$

» small and tunable expansion parameter:

$$\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$
$$\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad \qquad -\frac{11}{2} < \epsilon < \infty$$

» 1-Loop part of gauge beta function: $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + \mathcal{O}(\alpha^1) \right]$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}$$

» small and tunable expansion parameter:

$$\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$
$$\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad \qquad -\frac{11}{2} < \epsilon < \infty$$

» 1-Loop part of gauge beta function: $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + \mathcal{O}(\alpha^1) \right]$

» conformal expansion: $\alpha^* = \epsilon a_{\text{LO}} + \epsilon^2 a_{\text{NLO}} + \epsilon^3 a_{\text{NNLO}} + \dots$

2-loop gauge	3-loop gauge	4-loop gauge
1-loop Yukawa	2-loop Yukawa	3-loop Yukawa
1-loop quartic	2-loop quartic	3-loop quartic
Litim,Sannino, 2014]	[Bond, Medina, Litim, TS, 2017]	[Litim, Riyaz, Stamou, TS, 2023]

υv	Asymptotic Freedom		Asymptotic Safety	Effective Theory	C
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom	
	$\frac{11}{2}$ $\epsilon_{\rm m}$	nin () $\epsilon_{\rm m}$	lax	

Gaussian is UV FP

UV	Asymptotic Freedom		Asymptotic Safety	Effective Theory	
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom	
	$\frac{11}{2}$ $\epsilon_{\rm m}$	nin () $\epsilon_{\rm m}$	ax	

	Gaussian is	SUV FP	fully interacting UV FP $\alpha^*_{g,y,u,v} \neq 0$		
UV	Asymptoti	c Freedom	Asymptotic Safety	Effective Theory	
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom	
	$\frac{11}{2}$ $\epsilon_{\rm m}$	nin () $\epsilon_{\rm m}$	lax	

	Gaussian is	s UV FP	fully interacting UV FP $\alpha^*_{g,y,u,v} \neq 0$		
υv	Asymptoti	c Freedom	Asymptotic Safety	Effective Theory	Ē
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom	
	$\frac{11}{2}$ $\epsilon_{\rm m}$	nin () $\epsilon_{\rm m}$	lax	

 \rightarrow disappears outside of UV conformal window $[0, \epsilon_{\max}]$

 \rightarrow determine $\epsilon_{\max} \rightarrow (N_f, N_c)_{\min}$

 \rightarrow determine why

UV fixed point

1 relevant and 3 irrelevant directions

UV fixed point

 α_g

III. Computation

» obtain β_g at 4 loops, $\beta_{y,u,v}$ at 3 loops and evaluate $\beta_{g,y,u,v} = 0$

» obtain β_g at 4 loops, $\beta_{y,u,v}$ at 3 loops and evaluate $\beta_{g,y,u,v} = 0$ » 4 loop gauge, 3 loop Yukawa RGEs are known for all ren. QFTs [Pool, Thomsen (2019)] [Bednyakov, Pikelner (2021)] [Davies, Herren, Thomsen (2021)]

» obtain β_g at 4 loops, $\beta_{y,u,v}$ at 3 loops and evaluate $\beta_{g,y,u,v} = 0$ » 4 loop gauge, 3 loop Yukawa RGEs are known for all ren. QFTs [Pool, Thomsen (2019)] [Bednyakov, Pikelner (2021)] [Davies, Herren, Thomsen (2021)]

» Quartic 3-loop: pure scalar and Yukawa contributions are known for generic theories [TS (2021)] [TS, Jack, Osborn (2023)]

» obtain β_g at 4 loops, $\beta_{y,u,v}$ at 3 loops and evaluate $\beta_{g,y,u,v} = 0$ » 4 loop gauge, 3 loop Yukawa RGEs are known for all ren. QFTs [Pool, Thomsen (2019)] [Bednyakov, Pikelner (2021)] [Davies, Herren, Thomsen (2021)]

- » Quartic 3-loop: pure scalar and Yukawa contributions are known for generic theories [TS (2021)] [TS, Jack, Osborn (2023)]
- » missing: gauge contributions to 3-loop Quartic beta functions
- » determine (finite N) in two different ways
 - \rightarrow direct loop computation in LiSa
 - \rightarrow use template RGEs, extract from literature

» everything 3-loop (check against literature), 33.5k diagrams

» own code MaRTIn [Brod, Stamou, Steudtner '22], uses QGRAF [Nogueira '93] and FORM [Vermaseren et al.]

» RGEs from counterterms, need to distinguish UV and IR poles (massless fields, no ext. momenta)

» everything 3-loop (check against literature), 33.5k diagrams

» own code MaRTIn [Brod, Stamou, Steudtner '22], uses QGRAF [Nogueira '93] and FORM [Vermaseren et al.]

» RGEs from counterterms, need to distinguish UV and IR poles (massless fields, no ext. momenta)

» Infrared rearrangement with mass parameter [Misiak, Munz, Chetyrkin, '94 & '98]

$$\int_{p} \dots \frac{1}{(p-q)^{2}} = \int_{p} \dots \left(\frac{1}{p^{2} - m_{\text{IRA}}^{2}} + \frac{2 p \cdot q - q^{2} - m_{\text{IRA}}^{2}}{p^{2} - m_{\text{IRA}}^{2}} \frac{1}{(p-q)^{2}} \right)$$

DoD = -2
DoD = -3

 \rightarrow cut away finite terms systematically

ightarrow IR divergencies are regulated due to $\,m_{
m IRA}^2$

» everything 3-loop (check against literature), 33.5k diagrams

» own code MaRTIn [Brod, Stamou, Steudtner '22], uses QGRAF [Nogueira '93] and FORM [Vermaseren et al.]

- » RGEs from counterterms, need to distinguish UV and IR poles (massless fields, no ext. momenta)
- » Infrared rearrangement with mass parameter [Misiak, Munz, Chetyrkin, '94 & '98]

$$\int_{p} \dots \frac{1}{(p-q)^{2}} = \int_{p} \dots \left(\frac{1}{p^{2} - m_{\text{IRA}}^{2}} + \frac{2 p \cdot q - q^{2} - m_{\text{IRA}}^{2}}{p^{2} - m_{\text{IRA}}^{2}} \frac{1}{(p-q)^{2}} \right)$$

DoD = -2
DoD = -3

 \rightarrow cut away finite terms systematically

ightarrow IR divergencies are regulated due to $m^2_{
m IRA}$

 \rightarrow neglect numerator mass, include gluon and scalar mass counterterm

» everything 3-loop (check against literature), 33.5k diagrams

» own code MaRTIn [Brod, Stamou, Steudtner '22], uses QGRAF [Nogueira '93] and FORM [Vermaseren et al.]

- » RGEs from counterterms, need to distinguish UV and IR poles (massless fields, no ext. momenta)
- » Infrared rearrangement with mass parameter [Misiak, Munz, Chetyrkin, '94 & '98]

$$\int_{p} \dots \frac{1}{(p-q)^{2}} = \int_{p} \dots \left(\frac{1}{p^{2} - m_{\text{IRA}}^{2}} + \frac{2 p \cdot q - q^{2} - m_{\text{IRA}}^{2}}{p^{2} - m_{\text{IRA}}^{2}} \frac{1}{(p-q)^{2}} \right)$$

DoD = -2
DoD = -3

- \rightarrow cut away finite terms systematically
- ightarrow IR divergencies are regulated due to $m^2_{
 m IRA}$
- \rightarrow neglect numerator mass, include gluon and scalar mass counterterm
- \rightarrow only massive vacuum integrals remain, common mass parameter \rightarrow reduction formulas from LiteRed [Lee '12 & '13], 3 Master integrals @ 3L [Martin, Robertson, '16]
Direct computation

» everything 3-loop (check against literature), 33.5k diagrams

» own code MaRTIn [Brod, Stamou, Steudtner '22], uses QGRAF [Nogueira '93] and FORM [Vermaseren et al.]

- » RGEs from counterterms, need to distinguish UV and IR poles (massless fields, no ext. momenta)
- » Infrared rearrangement with mass parameter [Misiak, Munz, Chetyrkin, '94 & '98]

$$\int_{p} \dots \frac{1}{(p-q)^{2}} = \int_{p} \dots \left(\frac{1}{p^{2} - m_{\text{IRA}}^{2}} + \frac{2 p \cdot q - q^{2} - m_{\text{IRA}}^{2}}{p^{2} - m_{\text{IRA}}^{2}} \frac{1}{(p-q)^{2}} \right)$$

DoD = -2
DoD = -3

- \rightarrow cut away finite terms systematically
- ightarrow IR divergencies are regulated due to $m^2_{
 m IRA}$
- \rightarrow neglect numerator mass, include gluon and scalar mass counterterm
- \rightarrow only massive vacuum integrals remain, common mass parameter \rightarrow reduction formulas from LiteRed [Lee '12 & '13], 3 Master integrals @ 3L [Martin, Robertson, '16]

ightarrow no γ_5 ambiguity [Chetyrkin, Zoller '12]

» template action with generalised fields, couplings: $\mathcal{L} \supset -y^a_{ij} \phi^a \psi^i \psi^j - \frac{1}{4!} \lambda_{abcd} \phi^a \phi^b \phi^c \phi^d$

» template action with generalised fields, couplings: $\mathcal{L} \supset -y^a_{ij} \phi^a \psi^i \psi^j - \frac{1}{4!} \lambda_{abcd} \phi^a \phi^b \phi^c \phi^d$

» RGE ansatz can be written down for such tensors

$$\beta_{abcd}^{\lambda} = c_1 \,\lambda_{abef} \lambda_{efcd} + c_2 \operatorname{Tr} \left[y^a y^e \right] \lambda_{ebcd} + c_3 \operatorname{Tr} \left[y^a y^b y^c y^d \right] + \dots$$

 \rightarrow all possible physics contained in tensor contractions, c_i are universal

» template action with generalised fields, couplings: $\mathcal{L} \supset -y^a_{ij} \phi^a \psi^i \psi^j - \frac{1}{4!} \lambda_{abcd} \phi^a \phi^b \phi^c \phi^d$

» RGE ansatz can be written down for such tensors

$$\beta_{abcd}^{\lambda} = c_1 \,\lambda_{abef} \lambda_{efcd} + c_2 \operatorname{Tr} \left[y^a y^e \right] \lambda_{ebcd} + c_3 \operatorname{Tr} \left[y^a y^b y^c y^d \right] + \dots$$

 \rightarrow all possible physics contained in tensor contractions, c_i are universal

» fix coefficients from literature

» template action with generalised fields, couplings: $\mathcal{L} \supset -y^a_{ij} \phi^a \psi^i \psi^j - \frac{1}{4!} \lambda_{abcd} \phi^a \phi^b \phi^c \phi^d$

» RGE ansatz can be written down for such tensors

$$\beta_{abcd}^{\lambda} = c_1 \,\lambda_{abef} \lambda_{efcd} + c_2 \operatorname{Tr} \left[y^a y^e \right] \lambda_{ebcd} + c_3 \operatorname{Tr} \left[y^a y^b y^c y^d \right] + \dots$$

 \rightarrow all possible physics contained in tensor contractions, c_i are universal

» fix coefficients from literature
 » quartic RGE in gaugeless limit complete [TS 2021] [Jack, Osborn, TS, 2023]
 » gauge contributions, only for charged fermions

» template action with generalised fields, couplings: $\mathcal{L} \supset -y^a_{ij} \phi^a \psi^i \psi^j - \frac{1}{4!} \lambda_{abcd} \phi^a \phi^b \phi^c \phi^d$

» RGE ansatz can be written down for such tensors

$$\beta_{abcd}^{\lambda} = c_1 \,\lambda_{abef} \lambda_{efcd} + c_2 \operatorname{Tr} \left[y^a y^e \right] \lambda_{ebcd} + c_3 \operatorname{Tr} \left[y^a y^b y^c y^d \right] + \dots$$

 \rightarrow all possible physics contained in tensor contractions, c_i are universal

» fix coefficients from literature

» quartic RGE in gaugeless limit complete [TS 2021] [Jack, Osborn, TS, 2023]

» gauge contributions, only for charged fermions

» reduction of TS due to gauge invariance

» template action with generalised fields, couplings: $\mathcal{L} \supset -y^a_{ij} \phi^a \psi^i \psi^j - \frac{1}{4!} \lambda_{abcd} \phi^a \phi^b \phi^c \phi^d$

» RGE ansatz can be written down for such tensors

$$\beta_{abcd}^{\lambda} = c_1 \,\lambda_{abef} \lambda_{efcd} + c_2 \operatorname{Tr} \left[y^a y^e \right] \lambda_{ebcd} + c_3 \operatorname{Tr} \left[y^a y^b y^c y^d \right] + \dots$$

 \rightarrow all possible physics contained in tensor contractions, c_i are universal

» fix coefficients from literature

» quartic RGE in gaugeless limit complete [TS 2021] [Jack, Osborn, TS, 2023]

- » gauge contributions, only for charged fermions
- » reduction of TS due to gauge invariance
- » use SM 3L results [Chetyrkin, Zoller '12 '13] [Bednyakov, Pikelner, Velizhanin '13] and QED-like gauge-Yukawa theory [Marquard, Boyack, Maciejko '18]

\rightarrow unable to fix all coefficients, but enough to compute LiSa RGEs!

IV. Conformal window

- » beta functions $\beta_{g,y,u,v}$
 - \rightarrow fixed point values $\alpha^*_{g,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v}=0$

- » beta functions $\beta_{g,y,u,v}$
 - \rightarrow fixed point values $\alpha^*_{g,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v}=0$
 - $\rightarrow \text{ critical exponents } \vartheta_i \text{ as eigenvalues of stability matrix } M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}} \Big|_{\alpha = \alpha^*}$

$$(\alpha_x - \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\sigma_i} \qquad \qquad \vartheta_1 < 0 < \vartheta_{2,3,4}$$

- » beta functions $\beta_{g,y,u,v}$
 - \rightarrow fixed point values $\alpha^*_{g,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v}=0$
 - $\rightarrow \text{ critical exponents } \vartheta_i \text{ as eigenvalues of stability matrix } M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}} \Big|_{\alpha = \alpha^*} \\ (\alpha_x \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta_i} \qquad \qquad \vartheta_1 < 0 < \vartheta_{2,3,4}$
- » typical shape (all loop orders)
 - $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + b_g(\alpha_{g,y,u}, \epsilon) \right]$ $\beta_y = \alpha_y \, b_y(\alpha_{g,y,u}, \epsilon)$

$$\beta_u = b_u(\alpha_{g,y,u}, \epsilon)$$

 $\mathcal{L} \supset -u \operatorname{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \operatorname{Tr} \left[\phi^{\dagger} \phi \right] \operatorname{Tr} \left[\phi^{\dagger} \phi \right]$ single trace"

» beta functions $\beta_{g,y,u,v}$ \rightarrow fixed point values $\alpha^*_{q,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v}=0$ \rightarrow critical exponents ϑ_i as eigenvalues of stability matrix $M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_i} \Big|_{\alpha = 0}$ $(\alpha_x - \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta}$ $\vartheta_1 < 0 < \vartheta_{2,3,4}$ » typical shape (all loop orders) $\mathcal{L} \supset -u \operatorname{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \operatorname{Tr} \left[\phi^{\dagger} \phi \right] \operatorname{Tr} \left[\phi^{\dagger} \phi \right]$ $\beta_q = \alpha_q^2 \left[\frac{4}{3} \epsilon + b_q(\alpha_{q,y,u}, \epsilon) \right]$ "single trace" $\beta_{u} = \alpha_{u} b_{u}(\alpha_{q,u,u}, \epsilon)$ $\beta_u = b_u(\alpha_{q,u,u}, \epsilon)$ $\beta_v = f_0(\alpha_{g,y,u}, \epsilon) + f_1(\alpha_{g,y,u}, \epsilon) \alpha_v + f_2(\alpha_{g,y,u}, \epsilon) \alpha_v^2$ "double trace"

 \rightarrow quadratic shape, up to two solutions $\alpha_v^{*\pm}$ for each $\alpha_{a.u.u}^*$

10

» strong coupling $\alpha_x^* \gtrsim 1$

» strong coupling $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled

» strong coupling $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below

$$\alpha_u^* > 0 \qquad \qquad \alpha_u^* + \alpha_v^* > 0$$

» strong coupling $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below $\alpha_u^* > 0 \qquad \alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at ϵ_{\max} , both become complex

» strong coupling $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below $\alpha_u^* > 0 \qquad \alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at ϵ_{\max} , both become complex

» strong coupling $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below $\alpha_u^* > 0 \qquad \alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at ϵ_{\max} , both become complex

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
- \rightarrow series is exact up to third term

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
- \rightarrow series is exact up to third term
- \rightarrow hints for vacuum instability
- $\alpha_u^* + \alpha_v^* \approx + 0.0625 \epsilon 0.192 \epsilon^2 1.62 \epsilon^3 + \dots$

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
- → series is exact up to third term → hints for vacuum instability $\alpha_u^* + \alpha_v^* \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + ...$ → hints for single trace merger
 - $\vartheta_1 \approx -0.608 \,\epsilon^2 + 0.707 \,\epsilon^3 + 6.947 \,\epsilon^4 + \dots$

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
- → series is exact up to third term → hints for vacuum instability $\alpha_u^* + \alpha_v^* \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + ...$ → hints for single trace merger $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + ...$
- \rightarrow no hint for double-trace merger, unstable second solution

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
- → series is exact up to third term → hints for vacuum instability $\alpha_u^* + \alpha_v^* \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + ...$ → hints for single trace merger $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + ...$
- \rightarrow no hint for double-trace merger, unstable second solution
- \rightarrow power series is short, bad convergence
- \rightarrow can employ Padè resummation in ϵ

»
$$\epsilon$$
 – expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$ » $\beta_{g,y,u,v} = 0$

→ series is exact up to third term → hints for vacuum instability $\alpha_u^* + \alpha_v^* \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + ...$ → hints for single trace merger $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + ...$

- \rightarrow no hint for double-trace merger, unstable second solution
- \rightarrow power series is short, bad convergence
- \rightarrow can employ Padè resummation in ϵ

 \rightarrow resums higher orders in ϵ

13

14

» ϵ – expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$

»
$$\beta_{g,y,u,v} = 0$$

→ series is exact up to third term → hints for vacuum instability $\alpha_u^* + \alpha_v^* \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + ...$ → hints for single trace merger $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + ...$

- \rightarrow no hint for double-trace merger, unstable second solution
- \rightarrow power series is short, bad convergence

 \rightarrow can employ Padè resummation in ϵ

 \rightarrow resums higher orders in $\,\epsilon$

 \rightarrow hints at vacuum instability

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
- → series is exact up to third term → hints for vacuum instability $\alpha_u^* + \alpha_v^* \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + ...$ → hints for single trace merger $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + ...$
- \rightarrow no hint for double-trace merger, unstable second solution
- \rightarrow power series is short, bad convergence
- \rightarrow can employ Padè resummation in ϵ

»
$$\beta_{g,y,u,v} = 0$$

 \rightarrow resums higher orders in ϵ

»
$$\beta_{g,\text{eff}} = 0$$

→ RGE along relevant separatrix

 \rightarrow hints at vacuum instability

$$\rightarrow$$
 RGE along relevant separatrix
 $\rightarrow \beta_{g,\text{eff}} = \beta_g \text{ with } \alpha_{y,u,v} = \alpha_{y,u,v}(\alpha_g)$

- $\rightarrow \text{RGE along relevant separatrix}$ $\rightarrow \beta_{g,\text{eff}} = \beta_g \text{ with } \alpha_{y,u,v} = \alpha_{y,u,v}(\alpha_g)$ $\rightarrow \text{Expansion around Gaussian (weak branch)}$ $\beta_{g,\text{eff}} = \sum_{\ell=1}^{\infty} A_{\ell}(\epsilon) \, \alpha_g^{\ell+1}$
 - \rightarrow complete ϵ dependence up to A_4

- \rightarrow RGE along relevant separatrix $\rightarrow \beta_{g,\text{eff}} = \beta_g \text{ with } \alpha_{y,u,v} = \alpha_{y,u,v}(\alpha_g)$
- \rightarrow Expansion around Gaussian (weak branch) $\beta_{g,\text{eff}} = \sum_{\ell=1}^{\infty} A_{\ell}(\epsilon) \alpha_{g}^{\ell+1}$
- \rightarrow complete ϵ dependence up to A_4 \rightarrow more consistency than $~\beta_{g,y,u,v}=0$

- \rightarrow RGE along relevant separatrix $\rightarrow \beta_{g,\text{eff}} = \beta_g \text{ with } \alpha_{y,u,v} = \alpha_{y,u,v}(\alpha_g)$
- \rightarrow Expansion around Gaussian (weak branch) $\beta_{g,\text{eff}} = \sum_{\ell=1}^{\infty} A_{\ell}(\epsilon) \alpha_{g}^{\ell+1}$
- → complete ϵ dependence up to A_4 → more consistency than $\beta_{g,y,u,v} = 0$ → Padè and Padè-Borel resummation in α_g

- \rightarrow RGE along relevant separatrix $\rightarrow \beta_{g,\text{eff}} = \beta_g \text{ with } \alpha_{y,u,v} = \alpha_{y,u,v}(\alpha_g)$
- \rightarrow Expansion around Gaussian (weak branch) $\beta_{g,\text{eff}} = \sum_{\ell=1}^{\infty} A_{\ell}(\epsilon) \alpha_{g}^{\ell+1}$
- → complete ϵ dependence up to A_4 → more consistency than $\beta_{g,y,u,v} = 0$ → Padè and Padè-Borel resummation in α_g → requires 432 RGEs

Relevant Separatrix

Relevant Separatrix

 α_g

Relevant Separatrix

 α_g
Relevant Separatrix

Relevant Separatrix

» conformal window in weakly coupled regime

- » conformal window in weakly coupled regime
- $\, \ast \,$ conformal window around same size for 322 and 433 RGEs
- » increased consistency between conformal expansion and solving RGEs

- » conformal window in weakly coupled regime
- » conformal window around same size for 322 and 433 RGEs
- » increased consistency between conformal expansion and solving RGEs
- » double trace merger after loss of vacuum stability

- » conformal window in weakly coupled regime
- » conformal window around same size for 322 and 433 RGEs
- » increased consistency between conformal expansion and solving RGEs
- » double trace merger after loss of vacuum stability
- » vacuum instability or single trace merger

 $\epsilon_{\rm max}\approx 0.08-0.10$

» result valid for LiSa & Majorana models

» conformal window in weakly coupled regime

- $\, \ast \,$ conformal window around same size for 322 and 433 RGEs
- » increased consistency between conformal expansion and solving RGEs
- » double trace merger after loss of vacuum stability
- » vacuum instability or single trace merger

 $\epsilon_{\rm max}\approx 0.08-0.10$

» result valid for LiSa & Majorana models

 $(N_c, N_f) = (5, 26), (7, 39), (9, 50), (11, 61), \dots$

