Life at a Multi-TeV Muon Collider NCBJ, Warsaw

Richard Ruiz¹

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

24 April 2023

Thank you for the invitation!

the big picture

What is life like at a multi-TeV $\mu^+\mu^-$ collider?

Note: for this talk, no substantial difference between e^+e^- and $\mu^+\mu^-$, only collider energy \sqrt{s}

R. Ruiz - IFJ PAN

Life of μ – NCBJ

<ロト < 部 > < 言 > < 言 > 三 = うへ() CBJ 4 / 49 Why is this relevant?

Why?² Situation where scattering formalism is theoretically interesting

Partonic collisions at $Q \sim O(10)$ TeV explore when **electroweak (EW)** symmetry is nearly restored, i.e., $(M_{W/Z/H}^2/Q^2) \rightarrow 0$

See C. Bauer, et al ('16,'17,'18); T. Han, et al ('16,'20,'21); A. Manohar, et al ('14,'18) + others

When momentum transfers reach $Q \sim O(10)$ TeV, vector boson scattering (VBS/VBF) acts a bit... funny w/ A. Costantini, et al [2005.10289]

6 / 49

so what are $\mu^+\mu^-$ collisions at many-TeV like anyway?

Quick interlude: s-channel annihilation vs VBF/S

More legs \implies more propagators $\implies \int dk^2/(k^2 - M_W^2) \sim \log(\Lambda^2/M_W^2)$ Larger $s \implies$ larger $(M_{WW}^2/M_W^2) \implies$ collinear V compensate for g $(M_{WW}^2 - IEJ PAN$ Life of μ - NCBJ 8/49

Higgs production³

 $^{^3}$ In the following, we use full matrix elements at leading order with MadGraph5_aMCONLO (and some diagram selection) \sim \sim

cross sections (σ) vs \sqrt{s} for s-channel annihilation (dash) vs VBF (solid)

• Eventually, $\sigma^{VBF} > \sigma^{s-channel}$ since • $\sigma^{s-channel} \sim 1/s$

• $\sigma^{VBF} \sim \log^2(M_{VV}^2/M_V^2)/M_{VV}^2$ due to forward emission of $V = W/Z_{OQC}$

R. Ruiz - IFJ PAN

Life of μ – NCBJ

10 / 49

Top production

Life of μ – NCBJ

R. Ruiz - IFJ PAN

• Do you notice a pattern?

<ロ> < 母> < 臣> < 臣> < 臣> 王国 のへの BJ 12 / 49

Supersymmetry

R. Ruiz - IFJ PAN

Life of μ – NCBJ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(L) chargino pairs

(R) stop pairs

• And now?

Life of μ – NCBJ

<ロト < 部 > < 王 > < 王 > < 王 > < 王 > の < () BJ 14 / 49

Simple Extensions

R. Ruiz - IFJ PAN

Life of μ – NCBJ

(L) Singlet + Z production

(R) vector-like top pair production

• ... a little different but a lot of the same

R. Ruiz - IFJ PAN

Life of μ – NCBJ

<ロト < 部 > < 王 > < 王 > 王 = うへの BJ 16 / 49

Many-boson production⁴

 ${}^{4}\text{My}$ favorite! I find these processes really neat!

Life of μ – NCBJ

<ロト < 部 > < 王 > < 王 > < 王 > < 王 > のへの BJ 17 / 49

• VBF is the dominant production vehicle for many processes

R. Ruiz - IFJ PAN

Life of μ – NCBJ

18 / 49

ELE NOR

< Ξ > < Ξ

Evidence for trend that VBF/S rates will always exceed s-ch. rates

Is this obvious? (not to me at first!) Is there intuition for this? (yes!)

w/ A. Costantini, et al [2005.10289]

Evidence for trend that VBF/S rates will always exceed *s*-ch. rates Is this obvious? (not to me at first!) Is there intuition for this? (yes!) w/ A. Costantini, et al [2005.10289]

Idea: crudely compare the production of X by writing generically

$$\sigma^{s-ch.} \sim \frac{(s-M_X^2)}{(s-M_V^2)^2} \sim \frac{(s-M_X^2)}{s^2} \quad \leftarrow \text{ assumes } s \gg M_V^2$$

$$\frac{d\sigma^{VBF}}{dz_1 dz_2} \sim \underbrace{f_V(z_1) f_{V'}(z_2)}_{"\mu \text{PDFs"}} \underbrace{\frac{(M_{VV'}^2 - M_X^2)}{(M_{VV'}^2 - M_V^2)^2}}_{M_{VV'}^2 = z_1 z_2 s \gg M_V^2} \sim f_V(z_1) f_{V'}(z_2) \frac{(z_1 z_2 s - M_X^2) \sigma^{s-ch.}}{(z_1 z_2)^2 (s-M_X^2)}$$

< ロ > 〈 母 > 〈 臣 > 〈 臣 > 王国) 오(~ BJ 19 / 49

Evidence for trend that VBF/S rates will always exceed s-ch. rates Is this obvious? (not to me at first!) Is there intuition for this? (yes!) w/ A. Costantini, et al [2005.10289]

Idea: crudely compare the production of X by writing generically

$$\sigma^{s-ch.} \sim \frac{(s-M_X^2)}{(s-M_V^2)^2} \sim \frac{(s-M_X^2)}{s^2} \leftarrow \text{assumes } s \gg M_V^2$$

$$\frac{d\sigma^{VBF}}{dz_1 dz_2} \sim \underbrace{f_V(z_1) f_{V'}(z_2)}_{"\mu \text{PDFs"}} \underbrace{\frac{(M_{VV'}^2 - M_X^2)}{(M_{VV'}^2 - M_V^2)^2}}_{M_{VV'}^2 = z_1 z_2 s \gg M_V^2} \sim f_V(z_1) f_{V'}(z_2) \frac{(z_1 z_2 s - M_X^2) \sigma^{s-ch.}}{(z_1 z_2)^2 (s-M_X^2)}$$

PDFs are largest when $z = E_V/E_\mu \ll 1$ but $E_V \sim \sqrt{s} \gg M_V$

$$\implies f_V(z_i) \sim rac{g_W^2}{4\pi} \; rac{1}{z_i} \; \log\left(rac{s}{M_V^2}
ight) \;\; \leftarrow \; {
m crude \; approximation}$$

R. Ruiz - IFJ PAN

< ロ > 〈 母 > 〈 臣 > 〈 臣 > 〈 臣 > 王 曰 つ Q (~ BJ 19 / 49

Evidence for trend that VBF/S rates will always exceed s-ch. rates Is this obvious? (not to me at first!) Is there intuition for this? (yes!) w/ A. Costantini, et al [2005.10289]

Idea: crudely compare the production of X by writing generically

$$\sigma^{s-ch.} \sim \frac{(s-M_X^2)}{(s-M_V^2)^2} \sim \frac{(s-M_X^2)}{s^2} \leftarrow \text{assumes } s \gg M_V^2$$

$$\frac{d\sigma^{VBF}}{dz_1 dz_2} \sim \underbrace{f_V(z_1) f_{V'}(z_2)}_{"\mu \text{PDFs"}} \underbrace{\frac{(M_{VV'}^2 - M_X^2)}{(M_{VV'}^2 - M_V^2)^2}}_{M_{VV'}^2 = z_1 z_2 s \gg M_V^2} \sim f_V(z_1) f_{V'}(z_2) \frac{(z_1 z_2 s - M_X^2) \sigma^{s-ch.}}{(z_1 z_2)^2 (s-M_X^2)}$$

PDFs are largest when $z = E_V/E_\mu \ll 1$ but $E_V \sim \sqrt{s} \gg M_V$

$$\implies f_V(z_i) \sim rac{g_W^2}{4\pi} \; rac{1}{z_i} \; \log\left(rac{s}{M_V^2}
ight) \quad \leftarrow {
m crude approximation}$$

Observation: $\sigma^{VBF} = \sigma^{s-ch} \times \int dz_1 dz_2 \dots$ is solvable for $M_{VV'} \gg M_X!$

Universal behavior: when production of X by VBF and annihilation are driven by same physics, VBF **dominates** when \sqrt{s} satisfies

$$\frac{\sigma^{\text{VBF}}}{\sigma^{s-ch.}} \sim \mathcal{S}\left(\frac{g_W^2}{4\pi}\right)^2 \left(\frac{s}{M_X^2}\right) \log^2 \frac{s}{M_V^2} \log \frac{s}{M_X^2} > 1$$

Scaling estimate not so bad if $M_X \gg M_V$. Difference is about $\mathcal{O}(10\%)$

mass (M_X) [TeV]	SZ (Singlet)	H_2Z (2HDM)	$t'\overline{t'}\;(\mathrm{VLQ})$	$\tilde{t}\tilde{t}$ (MSSM)	$\tilde{\chi}^0 \tilde{\chi}^0$ (MSSM)	$\tilde{\chi}^+ \tilde{\chi}^-$ (MSSM)	Scaling (Eq. 7.7)
400 GeV	2.1 TeV	$2.1 \mathrm{TeV}$	$11 { m TeV}$	$2.9 \mathrm{TeV}$	3.2 TeV	$7.5 \mathrm{TeV}$	1.0 (1.7) TeV
600 GeV	2.5 TeV	2.5 TeV	$16 \mathrm{TeV}$	$3.8 \mathrm{TeV}$	$3.8 \mathrm{TeV}$	$8.1 \mathrm{TeV}$	1.3 (2.4) TeV
800 GeV	2.8 TeV	2.8 TeV	22 TeV	4.3 TeV	4.3 TeV	8.5 TeV	1.7 (3.1) TeV
2.0 TeV	4.0 TeV	4.0 TeV	>30 TeV	7.8 TeV	$6.9 \mathrm{TeV}$	11 TeV	3.7 (6.8) TeV
3.0 TeV	4.8 TeV	4.8 TeV	>30 TeV	10 TeV	$9.0 \mathrm{TeV}$	13 TeV	5.3 (9.8) TeV
4.0 TeV	5.5 TeV	5.5 TeV	>30 TeV	13 TeV	$11 { m TeV}$	15 TeV	6.8 (13) TeV

Table 9. For representative processes and inputs, the required muon collider energy \sqrt{s} [TeV] at which the VBF production cross section surpasses the *s*-channel, annihilation cross section, as shown in figure 17. Also shown are the cross over energies as estimated from the scaling relationship in equation (7.7) assuming a mass scale M_X ($2M_X$).

Life of μ – NCBJ

<ロ > < 母 > < 臣 > < 臣 > 王 = うへの BJ 20 / 49 When $(M_{W/Z/H}^2/M_{VV}^2) \rightarrow 0$, qualitatively new behavior emerges:

VBF/S becomes the dominant scattering mechanism of EW states

However, in practice, numerical computations of VBF/S are difficult:

- Final states with many legs and diagrams
- Larger \sqrt{s} exacerbates large gauge cancellations
- onset of large soft and collinear logarithms, e.g.,

Historically, one approach to studying the EW theory at high energies is to treat it like massless QCD:

- Electroweak boson PDFs (~ rich literature!) + EW DGLAP evolution (lots of recent progress \rightarrow) $\frac{\frac{1}{8\pi^2}\frac{1}{k_F^2}\left(\frac{1+z^2}{z}\right)}{f_{s=L,R}} \frac{\frac{1}{8\pi^2}\frac{1}{k_F^2}\left(\frac{z}{z}\right)}{g_V^2(Q_L^{r})^2 g_{192}Y_LT_{f_s}^3} \frac{\frac{1}{8\pi^2}\frac{1}{k_F^2}\left(\frac{z}{z}\right)}{g_{f_0}^2}$
- Electroweak parton showers (← more recent progress)
- Electroweak Sudakov resummation (← just super cool!)

This is not necessarily the case today due to modern technology

R. RUIZ - IFJ PAN	R.	Ruiz	- IFJ	I PAN
-------------------	----	------	-------	-------

...

Life of $\mu - NCBJ$

シック 正則 スポッスポッス モッ 22 / 49

[Han, et al ('16)]

The Effective W/Z Approximation (EWA)⁵ a.k.a. weak boson parton distribution functions

⁵Dawson('84); Kane, et al ('84); Kunszt and Soper ('88)

Idea: Treat W/Z in (VV')-scattering as partons when $M_{VV'} \gg M_W, M_Z$,

- PDFs for $\mu \rightarrow V_T$ splitting identical to gluons in QCD
- PDFs for $\mu \rightarrow V_0$ splitting is "novel" complication ("power-suppressed" PDF)
- To derive PDFs, one expands $\mu \rightarrow lV_{\lambda}$ matrix elements in powers of

$$\mathcal{O}\left(\frac{p_T^2}{M_{VV}^2}\right)$$
 for V_T or $\mathcal{O}\left(\frac{p_T^2}{M_{VV}^2}\right)$ and $\mathcal{O}\left(\frac{M_V^2}{M_{VV}^2}\right)$ for V_0

Expert note: these power-law corrections are universal and quasi-universal!

R. Ruiz - IFJ PAN

24 / 49

 $\sigma(\mu^+\mu^- o \mathcal{F} + \text{ anything}) = f_{i/\mu^+} \otimes f_{j/\mu^-} \otimes \hat{\sigma}_{ij} + \text{uncertainties}$

R. Ruiz - IFJ PAN

Life of μ – NCBJ

25 / 49

₹ E ► E E ► 9 Q Q

$$\sigma(\mu^{+}\mu^{-} \to \mathcal{F} + \text{ anything}) = f_{i/\mu^{+}} \otimes f_{j/\mu^{-}} \otimes \hat{\sigma}_{ij} + \text{uncertainties}$$

$$= \sum_{\substack{V_{\lambda_{A}}, V_{\lambda_{B}}' \\ \text{sum over all configurations / phase space integral}} \int_{\tau_{0}/\xi_{1}}^{1} d\xi_{2} \int dPS_{\mathcal{F}}$$

$$= \sum_{\substack{V_{\lambda_{A}}, V_{\lambda_{B}}' \\ \text{sum over all configurations / phase space integral}} \int_{\mu^{-}}^{\mu^{-}} \int_{V_{\lambda_{A}}'}^{V_{\lambda_{A}}} \int_{\tau_{0}/\xi_{1}}^{\pi} d\xi_{2} \int dPS_{\mathcal{F}}$$

$$= \sum_{\substack{V_{\lambda_{A}}, V_{\lambda_{B}}' \\ \mu^{-}}} \int_{V_{\lambda_{A}}/\mu^{+}}^{\pi} (\xi_{1}, \mu_{f}) f_{V_{\lambda_{B}/\mu^{-}}'}(\xi_{2}, \mu_{f})} \int_{W_{\lambda}^{+}/W_{\lambda}^{-}/Z_{\lambda}/\gamma_{\lambda}} PDFs \text{ at LO}} X \xrightarrow{d\hat{\sigma}(V_{\lambda_{A}}V_{\lambda_{B}}' \to \mathcal{F})}_{\text{"hard scattering" at LO}}$$

<ロ > < 部 > < 문 > < 문 > 된 = うへで BJ 25 / 49

perturbative power-law corrections

<ロ > < 部 > < 문 > < 문 > 로 = > 로 = うへで BJ 25 / 49

w/ Antonio Costantini, Fabio Maltoni, Olivier Mattelaer [2111.02442]

R. Ruiz - IFJ PAN

Life of μ – NCBJ

25 / 49

Now suppose someone implemented this framework into an event generator...

(this is the brief interlude about "new technology")

R. Ruiz - IFJ PAN

Life of μ – NCBJ

<ロト < 部 > < 王 > < 王 > < 王 > < 王 > の < () BJ 26 / 49

MadGraph5_aMC@NLO (mg5amc) in a nutshell

MG5aMC is the 5th (or 6th) iteration of the Monte Carlo (MC) event generator MadisonGraph (or MadGraph) by Stelzer and Long at Wisconsin

[hep-ph/9401258]

• For a given scattering process, generates Feynman graphs and helicity amplitudes (HELAS routines) for *fast* numerical evaluation

MG5aMC is the 5th (or 6th) iteration of the Monte Carlo (MC) event generator MadisonGraph (or MadGraph) by Stelzer and Long at Wisconsin

[hep-ph/9401258]

- For a given scattering process, generates Feynman graphs and helicity amplitudes (HELAS routines) for *fast* numerical evaluation
- Phase space integration is done via MC sampling (MadEvent)
 ME also writes phase space points (external momental) to file with integration (probability) weight, i.e., MG+ME is a MC event generator

MG5aMC is the 5th (or 6th) iteration of the Monte Carlo (MC) event generator MadisonGraph (or MadGraph) by Stelzer and Long at Wisconsin

```
[hep-ph/9401258]
```

- For a given scattering process, generates Feynman graphs and helicity amplitudes (HELAS routines) for *fast* numerical evaluation
- Phase space integration is done via MC sampling (MadEvent)
 ME also writes phase space points (external momental) to file with integration (probability) weight, i.e., MG+ME is a MC event generator

Doing this efficiencely and robustly is difficult but doable. Maltoni, Stelzer $\left[hep-ph/0208156 \right]$

• + arbitrary color structures, + spin correlated decays of resonances (MadSpin), + amplitude support for arbitrary Feynman Rule (ALOHA), +jet matching/merging, + loop-induced processes (MadLoop)

MG5aMC is the 5th (or 6th) iteration of the Monte Carlo (MC) event generator MadisonGraph (or MadGraph) by Stelzer and Long at Wisconsin

```
[hep-ph/9401258]
```

- For a given scattering process, generates Feynman graphs and helicity amplitudes (HELAS routines) for *fast* numerical evaluation
- Phase space integration is done via MC sampling (MadEvent)
 ME also writes phase space points (external momental) to file with integration (probability) weight, i.e., MG+ME is a MC event generator

Doing this efficienctly and robustly is difficult but doable. Maltoni, Stelzer [hep-ph/0208156]

- + arbitrary color structures, + spin correlated decays of resonances (MadSpin), + amplitude support for arbitrary Feynman Rule (ALOHA), +jet matching/merging, + loop-induced processes (MadLoop)
- Merger with MC@NLO for NLO in QCD [1405.0301] and NLO in EW [1804.10017]

R. Ruiz - IFJ PAN

Life of μ – NCBJ

28 / 49

... what exactly did we do?⁶

⁶w/ Antonio Costantini, Fabio Maltoni, Olivier Mattelaer [2111.02442] ↔ □ ▷ ↔ ∂

Implementing EW boson PDFs in MadGraph5

• NEW: (Polarized) Effective Vector Boson Approx. (EVA)

- Bare (LO) PDFs for helicity-polarized $W_{\lambda}, Z_{\lambda}, \gamma_{\lambda}$ from ℓ_{λ}^{\pm}
- Automatically support PDFs for unpolarized W/Z (EWA) from ℓ_{λ}^{\pm}

• KEPT: Improved Weizsäcker-Williams approximation (iWWA)

• Unpolairzed γ PDF + power corrections from ℓ^{\pm} (Frixione, et al [hep-ph/9310350])

• Technicalities:

- M_W, M_Z always nonzero in PDFs and matrix elements!
- static and dyamic µ_f
- ▶ *n*-point µ_f variation
- Choice of p_T and q as evolution variable (this gives extra log(1 ξ) terms in PDFs!)
- Also enabled EVA+DIS collider configuration
- **Technical appendix** rederiving W_{λ} , Z_{λ} PDFs to provide standard reference and mapping between different approaches in the literature
 - ► Publicly released in v3.3.0 (Major milestone for lepton colliders; see Frixione, et al [2108.10261])

30 / 49

PDFs for $e^{\pm}, \mu^{\pm} \rightarrow W_{\lambda}/Z_{\lambda}/\gamma_{\lambda} + \ell$ depend on helicities (λ) • Subtle but important differences if evolving by q^2 of V vs p_T^2 of ℓ

(this can account for some differences between groups!)

$$\begin{split} f_{V_+/f_L}(z,\mu_f^2) &= \frac{g_V^2}{4\pi^2} \frac{g_L^2(1-z)^2}{2z} \log\left[\frac{\mu_f^2}{M_V^2}\right], \\ f_{V_-/f_L}(z,\mu_f^2) &= \frac{g_V^2}{4\pi^2} \frac{g_L^2}{2z} \log\left[\frac{\mu_f^2}{M_V^2}\right], \\ f_{V_-/f_L}(z,\mu_f^2) &= \frac{g_V^2}{4\pi^2} \frac{g_L^2}{2z} \log\left[\frac{\mu_f^2}{M_V^2}\right], \\ f_{V_0/f_L}(z,\mu_f^2) &= \frac{g_V^2}{4\pi^2} \frac{g_L^2(1-z)}{z}, \\ f_{V_0/f_L}(z,\mu_f^2) &= \frac{g_V^2}{4\pi^2} \frac{g_L^2(1-z)}{z}, \\ f_{V_-/f_R}(z,\mu_f^2) &= \left(\frac{g_R}{g_L}\right)^2 \times f_{V_-/f_L}(z,\mu_f^2) \\ f_{V_0/f_R}(z,\mu_f^2) &= \left(\frac{g_R}{g_L}\right)^2 \times f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_R}(z,\mu_f^2) &= \left(\frac{g_R}{g_L}\right)^2 \times f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_L}(z,\mu_f^2) &= \left(\frac{g_R}{g_L}\right)^2 \times f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_L}(z,\mu_f^2) \\ f_{V_0/f_L$$

R. Ruiz - IFJ PAN

<ロト < 部 > < 王 > < 王 > < 王 > シート < 部 > 王 = うへで BJ 31 / 49 Implementing all this was a multi-year, multi-step process:

- Automating matrix elements and cross sections for external partons with fixed helicities
 D. Buarque Franzosi, O. Mattelaer, RR, S. Shil [1912.01725]
 - ► Essentially enable $A_{\lambda} + B_{\lambda_B} \rightarrow C_{\lambda_C} + D_{\lambda_D} + \dots$ (λ_k =helicity)
 - Theoretically easy (after reorganizing Collinear Fact. Thm and defining polarized PDF/parton shower)
 - Dev. tricky since Lorentz invariance is lost (a ref. frame must be specified)
- **Improving** dPS integration routine (sde2) for *t*-channel mom.

K. Ostrolenk and O. Mattelaer [2102.00773]

Adding support for of EVA

RR, A. Costantini, F. Maltoni, O. Mattelaer [2111.02442]

< □ > < 클 > < 클 > < 클 > · 로 ≥ = ♡ Q (~ BJ 32 / 49

some results on $V_{\lambda}V'_{\lambda'} \to X$ in $\mu^+\mu^-$ collisions

7

Higgs production in EVA

Life of μ – NCBJ

We then had fun looking into *many* processes

(L)
$$\sum_{\lambda_A,\lambda_B} V_{\lambda_A} V_{\lambda_B} \to HX$$
 (R) $V_T V_0 \to HX$

R. Ruiz - IFJ PAN

Life of μ – NCBJ

35 / 49

E SQA

Tops in EVA

R. Ruiz - IFJ PAN

Life of μ – NCBJ

<ロ > < 部 > < 書 > < 書 > 名 = > 名 = の へ () BJ 36 / 49 ... *many* processes

(L)
$$\sum_{\lambda_A,\lambda_B} V_{\lambda_A} V_{\lambda_B} \to t\bar{t}X$$
 (R) $V_0 V_0 \to t\bar{t}X$

R. Ruiz - IFJ PAN

Life of μ – NCBJ

37 / 49

- EI= - のへの

イロト イボト イヨト イヨト

Triboson in EVA

R. Ruiz - IFJ PAN

Life of μ – NCBJ

 $\odot \odot \odot$

(L) $\sum_{\lambda_A,\lambda_B} V_{\lambda_A} V_{\lambda_B} \rightarrow 3V$ (R) $V_T V_T \rightarrow 3V$

R. Ruiz - IFJ PAN

Life of μ – NCBJ

<ロト < 部 > < 臣 > < 臣 > 王 = うへの BJ 39 / 49

Diboson in EVA

R. Ruiz - IFJ PAN

Life of μ – NCBJ

(4 polarization plots + 1 table) \times each class of processes

			σ [fb]	
	mg5amc syntax	$\sqrt{s} = 3$ TeV	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 30 \text{ TeV}$
$\sum V_{\lambda_A}V'_{\lambda_B} \rightarrow W^+W^-$	vp vm > w+ w-	$2.2 \cdot 10^2 + 98\% \\ -35\%$	$7.0 \cdot 10^2 + 91\% \\ -33\%$	$8.6 \cdot 10^2 + 88\% \\ -32\%$
$V_T V'_T \rightarrow W^+ W^-$	vp{T} vm{T} > w+ w-	$2.0 \cdot 10^2 + 99\% \\ -35\%$	$6.6 \cdot 10^2 + 93\% \\ -34\%$	$8.0 \cdot 10^2 + 92\% \\ -33\%$
$V_0 V'_T \rightarrow W^+ W^-$	$vp{0} vm{T} > w+ w-$	$1.2 \cdot 10^{1} + 54\% \\ -27\%$	$4.4 \cdot 10^{1} + 50\% \\ -25\%$	$5.2 \cdot 10^{1} + 49\% \\ -24\%$
$V_0V'_0 \rightarrow W^+W^-$	vp{0} vm{0} > w+ w-	$4.2 \cdot 10^{-1}$	$1.7 \cdot 10^0$	$2.0 \cdot 10^{0}$
$\sum V_{\lambda_A}V'_{\lambda_B} \rightarrow W^+Z$	vp vm > w+ z	$5.3 \cdot 10^{1} + 105\% \\ -40\%$	$1.8 \cdot 10^2 + 97\% \\ -37\%$	$2.2 \cdot 10^2 + 95\% \\ -37\%$
$V_T V'_T \rightarrow W^+ Z$	$vp{T} vm{T} > w+ z$	$5.0 \cdot 10^{1} + 111\% \\ -42\%$	$1.6 \cdot 10^2 + 103\% \\ -39\%$	$2.0 \cdot 10^2 + 100\% \\ -38\%$
$V_0 V_T' \rightarrow W^+ Z$	$vp{0} vm{T} > w+ z$	$3.4 \cdot 10^{0} + 36\% \\ -18\%$	$1.4 \cdot 10^{1} + 34\% \\ -17\%$	$1.7 \cdot 10^{1} + 34\% \\ -17\%$
$V_0V_0' \rightarrow W^+Z$	vp{0} vm{0} > w+ z	$3.9\cdot10^{-2}$	$2.1\cdot 10^{-1}$	$2.6 \cdot 10^{-1}$
$\sum V_{\lambda_A}V'_{\lambda_B} \rightarrow ZZ$	vp vm > z z	$4.4 \cdot 10^{1} + 164\% \\ -52\%$	$1.6 \cdot 10^2 + 144\% \\ -48\%$	$1.9 \cdot 10^2 + 143\% \\ -48\%$
$V_T V'_T \rightarrow ZZ$	$vp{T} vm{T} > z z$	$4.0 \cdot 10^{1} + 171\% \\ -54\%$	$1.4 \cdot 10^2 + 153\% \\ -50\%$	$1.7 \cdot 10^2 + 150\% \\ -49\%$
$V_0 V_T' \rightarrow ZZ$	$vp{0} vm{T} > z z$	$4.2 \cdot 10^{0} + 66\% \\ -33\%$	$1.8 \cdot 10^{1} + 61\% \\ -30\%$	$2.2 \cdot 10^{1} + 60\% \\ -30\%$
$V_0V_0' \rightarrow ZZ$	vp{0} vm{0} > z z	$1.1 \cdot 10^{-1}$	$6.0 \cdot 10^{-1}$	$7.2 \cdot 10^{-1}$
$\sum V_{\lambda_A}V'_{\lambda_B} \rightarrow \gamma Z$	vp vm > a z	$1.9 \cdot 10^{1} + 169\% \\ -53\%$	$7.1 \cdot 10^{1} + 149\% \\ -49\%$	$8.8 \cdot 10^{1} + 145\% \\ -48\%$
$V_T V'_T \rightarrow \gamma Z$	$vp{T} vm{T} > a z$	$1.8 \cdot 10^{1} + 172\% \\ -54\%$	$6.8 \cdot 10^{1} + 153\% \\ -50\%$	$8.4 \cdot 10^{1} + 149\% \\ -49\%$
$V_0 V'_T \rightarrow \gamma Z$	vp{0} vm{T} > a z	$9.5 \cdot 10^{-1} + 67\% \\ -33\%$	$4.4 \cdot 10^{0} + 61\% \\ -30\%$	$5.5 \cdot 10^{0} + 60\% \\ -30\%$
$V_0 V'_0 \rightarrow \gamma Z$	vp{0} vm{0} > a z	$5.6\cdot10^{-4}$	$4.5 \cdot 10^{-3}$	$6.5 \cdot 10^{-3}$
$\sum V_{\lambda_A}V'_{\lambda_B} \rightarrow \gamma W^+$	vp vm > a w+	$1.1 \cdot 10^{1} + 111\% \\ -42\%$	$4.0 \cdot 10^{1} + 101\% \\ -39\%$	$4.9 \cdot 10^{1} + 99\% \\ -38\%$
$V_T V'_T \rightarrow \gamma W^+$	$vp{T} vm{T} > a w+$	$1.1 \cdot 10^{1} + 111\% \\ -42\%$	$3.9 \cdot 10^{1} + 102\% \\ -39\%$	$4.8 \cdot 10^{1} + 100\% \\ -38\%$
$V_0 V_T' \rightarrow \gamma W^+$	vp{0} vm{T} > a w+	$1.6 \cdot 10^{-2} + 62\% \\ -31\%$	$7.3 \cdot 10^{-1} + \frac{+56\%}{-28\%}$	$9.2 \cdot 10^{-1} + 54\% \\ -27\%$
$V_0 V_0' \rightarrow \gamma W^+$	vp{0} vm{0} > a w+	$1.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-3}$	$1.7 \cdot 10^{-3}$
$\sum V_{\lambda_A}V'_{\lambda_B} \rightarrow \gamma\gamma$	vp vm > a a	$2.1 \cdot 10^{0} + 172\% \\ -54\%$	$8.5 \cdot 10^{0} + 152\% \\ -50\%$	$1.1 \cdot 10^{1} + 147\% \\ -48\%$
$V_T V'_T \rightarrow \gamma \gamma$	$vp{T} vm{T} > a a$	$2.1 \cdot 10^{0} + 172\% \\ -54\%$	$8.5 \cdot 10^{0} + 152\% \\ -50\%$	$1.1 \cdot 10^{1} + 147\% \\ -48\%$
$V_0 V_T' \to \gamma \gamma$	vp{0} vm{T} > a a	$7.8 \cdot 10^{-4} + 70\% \\ -35\%$	$3.4 \cdot 10^{-3} + 67\% \\ -34\%$	$4.2 \cdot 10^{-3} + 67\% \\ -33\%$
$V_0 V'_0 \rightarrow \gamma \gamma$	vp{0} vm{0} > a a	$5.8 \cdot 10^{-4}$	$4.7\cdot 10^{-3}$	$6.8 \cdot 10^{-3}$

R. Ruiz - IFJ PAN

the money plot #1

Life of μ – NCBJ

Plot: M_{WW} for (L) $W_0 W_0 \rightarrow HH$ (R) $W_T W_T \rightarrow \gamma \gamma \gamma$ solid (dashed) = full ME (EVA); lower (upper)= $\sqrt{2}\langle \Phi \rangle = v_{\rm EW} \left(\frac{v_{\rm EW}}{10} \right)$

EVA works within uncertainties when $(M_V^2/M_{VV}^2) < 10^{-2}$. tl;dr: M_V is large $\implies M_{VV}$ must be larger! Numerically consistent with heavy Q factorization (

R. Ruiz - IFJ PAN

Life of μ – NCBJ

43 / 49

the money plot #2

Life of μ – NCBJ

<ロ > < 部 > < 書 > < 書 > 名 = > 名 () BJ 44 / 49

Matching EW PDFs to matrix elements

Idea: Total cross section (σ^{total}) can be split into "collinear" ($\sigma^{\text{collinear}}$) and "wide-angle" ($\sigma^{\text{wide-angle}}$) bits. Summing *should* recover σ^{total}

Consider a single $\mu^- \rightarrow W^- \nu_\mu$ splitting in $W^+ W^-$ scattering $\sigma^{\text{total}} = \int_0^{M_{WW}} dp_\nu \frac{d\sigma}{dp_\nu}$

Life of μ – NCBJ

R. Ruiz - IFJ PAN

Life of μ – NCBJ

46 / 49

▶ ★ E ▶ ★ E ▶ E = のQO

Life of μ – NCBJ

46 / 49

Consider a single
$$\mu^- \to W^- \nu_{\mu}$$
 splitting in $W^+ W^-$ scattering
 $\sigma^{\text{total}} = \int_0^{M_{WW}} dp_{\nu} \frac{d\sigma}{dp_{\nu}} = \int_0^{\mu_f} dp_T^{\nu} \frac{d\sigma}{dp_T^{\nu}} + \int_{\mu_f}^{M_{WW}} dp_T^{\nu} \frac{d\sigma}{dp_T^{\nu}}$
The collinear part contains the W PDF:
 $\sigma^{\text{collinear}} = \int_0^{\mu_f} dp_T^{\nu} \frac{d\sigma}{dp_T^{\nu}} \sim \log\left(\frac{\mu_f^2}{M_W^2}\right) + \underbrace{\text{power corrections (PC1)}^{\nu_f}}_{\text{neglect}}$

The wide-angle part also depends on μ_f :

$$\sigma^{\text{wide-angle}} = \int_{\mu_f}^{M_{WW}} dp_T^{\nu} \frac{d\sigma}{dp_T^{\nu}} \sim \underbrace{\log\left(\frac{M_{WW}^2}{\mu_f^2}\right)}_{\text{same log as in PDF}} + \underbrace{\text{PC2}}_{\text{keep}}$$

Summing $\sigma^{\rm collinear}$ and $\sigma^{\rm wide-angle}$ should recover $\sigma^{\rm total},$ up to PC1

R. Ruiz - IFJ PAN

< □ ▶ < 圕 ▶ < 볼 ▶ < 볼 ▶ 올 ■ =
3J
46 / 49

ME matching: $\sigma^{sum} = \sigma^{EWA} + \sigma^{wide-angle}$ is independent of μ_f :

Plot: $\sigma(e^+\mu^- \rightarrow \gamma\gamma\gamma\overline{\nu_e}\nu_\mu)$ vs matching scale (μ_f)

Take away: Bare PDFs prefer small μ_f , where $\mathcal{O}(p_T^{\nu}/M_{WW}^2)$ is small!

(otherwise, one is outside the coll. limit; μ_f different for RG-improved PDFs)

R. Ruiz - IFJ PAN

Life of μ – NCBJ

47 / 49

= nan

When $M^2_{W/Z/H}/Q^2 \rightarrow 0$, qualitatively new behavior emerges

Bluntly, a O(10) TeV $\mu^+\mu^-$ collider behaves more like a high-energy hadron collider than a sub-TeV e^+e^- collider

[2005.10289]

Take-away: EWA/EVA can work (EW theory is a gauge theory!); some historical disagreements can be tied to size of power/log corrections [2111.02442]

Outlook: EWA/EVA in MadGraph is now available and plans underway to merge parallel Snowmass efforts

For a broader summary about VBF/VBS, see Buarque-Franzosi, Gallinaro, RR, et al [2106.01393]

Thank you!

R. Ruiz - IFJ PAN

Life of μ – NCBJ

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 BJ 49 / 49

What is missing?

(A better understanding of high-energy VBF/S)

What is missing? (1/3)

Idea: $W_{\lambda}/Z_{\lambda}/\gamma_{\lambda}$ PDFs are unrenormalized, so replace them!

 $\bullet \geq 2$ groups have advance-stage PDFs with EW-DGLAP evolution

Old

$$\begin{split} f_{V_+/f_L}(z,\mu_f^2) &= \frac{g_V^2}{4\pi^2} \frac{g_L^2(1-z)^2}{2z} \log \left\lfloor \frac{\mu_f^2}{M_V^2} \right\rfloor, \\ f_{V_-/f_L}(z,\mu_f^2) &= \frac{g_V^2}{4\pi^2} \frac{g_L^2}{2z} \log \left[\frac{\mu_f^2}{M_V^2} \right], \\ f_{V_0/f_L}(z,\mu_f^2) &= \frac{g_V^2}{4\pi^2} \frac{g_L^2(1-z)}{z}, \\ f_{V_+/f_R}(z,\mu_f^2) &= \left(\frac{g_R}{g_L} \right)^2 \times f_{V_-/f_L}(z,\mu_f^2) \\ f_{V_-/f_R}(z,\mu_f^2) &= \left(\frac{g_R}{g_L} \right)^2 \times f_{V_+/f_L}(z,\mu_f^2) \\ f_{V_0/f_R}(z,\mu_f^2) &= \left(\frac{g_R}{g_L} \right)^2 \times f_{V_0/f_L}(z,\mu_f^2) \end{split}$$

New

(efforts underway to incorporate Han, et al [2007.14300]!)

2 / 7

ELE SQC

What is missing? (2/3)

$$\sigma(\mu^{+}\mu^{-} \rightarrow \mathcal{F} + X) = \Delta \otimes f \otimes f \otimes \hat{\sigma} + \text{uncertainties}$$

$$= \underbrace{\sum_{V_{\lambda_{A}}, V_{\lambda_{B}}} \int_{\tau_{0}}^{1} d\xi_{1} \int_{\tau_{0}/\xi_{1}}^{1} d\xi_{2} \int dz \int dPS_{\mathcal{F}}}_{(\lambda_{D} \wedge f)} \underbrace{\Delta(z)}_{(z)}$$
Sudakov factor (several ways to include this)
sum over all configs. / phase space integral
$$\times \left[\underbrace{f_{V_{\lambda_{A}}/\mu^{+}}(\xi_{1}, \mu_{f})f_{V_{\lambda_{B}/\mu^{-}}}(\xi_{2}, \mu_{f})}_{W_{\lambda}^{+}/W_{\lambda}^{-}/Z_{\lambda}/\gamma_{\lambda}} \text{ PDFs at LO} \right] \times \underbrace{\frac{d\hat{\sigma}(V_{\lambda_{A}}V_{\lambda_{B}}' \rightarrow \mathcal{F})}{dPS_{n}}}_{\text{"hard scattering" at LO}}$$

$$+ \underbrace{\mathcal{O}\left(\frac{M_{V_{k}}}{M_{VV'}}\right) + \mathcal{O}\left(\frac{P_{T}^{2}, V_{k}}{M_{VV'}^{2}}\right)}_{\text{log corrections}}$$

$$+ \underbrace{\mathcal{O}\left(\frac{\alpha_{W}}{M_{VV'}^{2}}\log\frac{\mu_{f}^{2}}{M_{VV'}^{2}}\right)}_{\text{log corrections}}$$

 Z_T/γ_T interference: When Z_T/γ_T can interfere, in principle, there is a "third PDF" and "third squared matrix element"

- $f_{\gamma_T/\mu}(\xi,\mu)$: from $\mu \to \mu \gamma_T$ ME and paired with $|\mathcal{M}(\gamma_T X \to \mathcal{F})|^2$
- $f_{Z_T/\mu}(\xi,\mu)$: from $\mu \to \mu Z_T$ ME and paired with $|\mathcal{M}(Z_T X \to \mathcal{F})|^2$
- $f_{(\gamma_T * Z_T)/\mu}(\xi, \mu)$: from $\mu \to \mu Z_T/\gamma_T$ interference and paired with the quantity $\Re[\mathcal{M}^*(\gamma_T X \to \mathcal{F})\mathcal{M}(Z_T X \to \mathcal{F})]$

The last is documented in more recent literature (e.g., Han, et al; Manohar, et al) but does not involve scattering of asymptotic states / mass eigenstates

Proton vs muon

R. Ruiz - IFJ PAN

Life of μ – NCBJ

Like e^+e^- machines, $\mu^+\mu^-$ machines collide elementary particles

- up to rad. corrections, $\mu\mu$ collisions carry full energy $\implies \sqrt{\hat{s}} = \sqrt{s}$
- pp colliders, e.g., LHC and FCC-hh, need larger \sqrt{s} for same $\sqrt{\hat{s}}$

Plot:
$$\sqrt{s_{
m pp}}$$
 needed for $\hat{\sigma}_{
m pp}=\hat{\sigma}_{\mu\mu}$ in $2 o 1$ processes at $\sqrt{s_{\mu\mu}}$

R. Ruiz - IFJ PAI

ELE NOR

 $2 \rightarrow 1$ processes are only small subset of possibilities (and also special!)

• 2 \rightarrow 2 process help give bigger picture (and variability!)

Plot: $\sqrt{s_{\rho\rho}}$ needed for $\hat{s}_{\rho\rho}\hat{\sigma}_{\rho\rho} = \hat{s}_{\mu\mu}\hat{\sigma}_{\mu\mu}$ in 2 \rightarrow 2 processes at $\sqrt{s_{\mu\mu}}$

• Assumed that $2M = 0.9\sqrt{s_{\mu\mu}}$ • PDF and phase space impact 2 \rightarrow 2 more than the 2 \rightarrow 1 suggests one

R. Ruiz - IFJ PAN