EFT Matching with Functional Methods

Anders Eller Thomsen

Based on work with J. Fuentes-Martín, M. König, J. Pagès, and F. Wilsch

Warsaw physics seminars 18 April 2023

EFTs in BSM physics

Why EFTs play a role in the search for new physics

Direct searches for new physics

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: March 2022

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ί,γ	Jets†	E ^{miss} T	∫£ dt[fb	Limit	-		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD 0BH} \\ \text{ADD 0BH multijet} \\ \text{RS1} G_{KK} \rightarrow \gamma\gamma \\ \text{Bulk RS} G_{KK} \rightarrow WW/ZZ \\ \text{Bulk RS} G_{KK} \rightarrow WW/ZZ \\ \text{Bulk RS} G_{KK} \rightarrow WW \rightarrow \ell\gamma qq \\ \text{Bulk RS} G_{RK} \rightarrow tt \\ \text{2UED} / RPP \end{array}$	0 e, μ, τ, γ 2 γ - 2 γ multi-channe 1 e, μ 1 e, μ 1 e, μ	1-4j 2j $\ge 3j$ - 2j/1J $\ge 1b, \ge 1J/2$ $\ge 2b, \ge 3j$	Yes - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1 36.1	mass	11.2 Te 8.6 TeV 8.9 TeV 9.55 TeV 2.3 TeV 2.0 TeV 3.6 TeV 1.8 TeV	$ \begin{array}{l} & a = 2 \\ & a = 3 \ \text{HLZ NLO} \\ & a = 6 \\ & a = 6, \ M_D = 3 \ \text{TeV}, \ \text{rot} \ \text{BH} \\ & k / M_R = 0.1 \\ & k / M_R = 1.0 \\ & k / M_R = 1.0 \\ & \Gamma / m = 15\% \\ & \Pi e^{c}(1,1), \ 2 (A^{(1,1)} \to tt) = 1 \end{array} $	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ \theta \\ 0 \ e, \mu \\ 0 \ e, \mu \\ 2 \ \mu \end{array}$	- 2 b ≥1 b, ≥2 , - 2 j, ≥1 , 2 j, 2 j, ≥1 b, ≥1 , 2 j (VBF) ≥1 b, ≥2 , 1 J	- Yes Yes Yes Yes Yes	139 36.1 39 139 139 139 139 139 139 139 139 80	mas	5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 5.0 TeV 4.4 TeV 4.3 TeV 3.2 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $m(N_G) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2022.005 2007.05293 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl µµbs Cl tttt	2 e,µ 2 e 2 µ ≥1 e,µ	2 j - 1 b 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	,	.8 TeV 2.0 TeV 2.57 TeV	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^{-} \\ \textbf{35.8 TeV} & \eta_{LL}^{-} \\ g_{*} = 1 \\ g_{*} = 1 \\ G_{tl} = 4\pi \end{array}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac D Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ 0 e, μ, τ, γ M) 0 e, μ multi-channe	1-4j 1-4j 2b	Yes Yes Yes	139 139 139 139	ವರೆ ನನ 376 GeV ನನ 560 GeV	2.1 TeV 3.1 TeV	$\begin{array}{l} g_q{=}0.25, g_c{=}1, m(\chi){=}1 \; {\rm GeV} \\ g_q{=}1, g_c{=}1, m(\chi){=}1 \; {\rm GeV} \\ \tan \beta{=}1, g_Z{=}0.8, m(\chi){=}100 \; {\rm GeV} \\ \tan \beta{=}1, g_Z{=}0.8, m(\chi){=}100 \; {\rm GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
5	Scalar LQ 1 st gen Scalar LQ 2 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	2 e 2μ 1τ $0 e, \mu$ $\ge 2 e, \mu, \ge 1$ $0 e, \mu, \ge 1 \tau$ 1τ	≥2 j ≥2 j ≥2 j, ≥2 b r≥1 j, ≥1 b 0 - 2 j, 2 t 2 b	Yes Yes Yes - Yes Yes	139 139 139 139 139 139 139	mass 1.2 mass 1.2 TeV mass 1.2 TeV mass 1.2 TeV mass 1.4 T mass 1.2 TeV mass 1.2 TeV	.8 TeV 7 TeV eV 7 TeV 77 TeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}[\mathrm{LO}_3^* \to \mathrm{br}) = 1 \\ \mathcal{B}[\mathrm{LO}_2^* \to \mathrm{tr}) = 1 \\ \mathcal{B}(\mathrm{LO}_4^* \to \mathrm{tr}) = 1 \\ \mathcal{B}(\mathrm{LO}_4^* \to \mathrm{br}) = 1 \\ \mathcal{B}(\mathrm{LO}_4^* \to \mathrm{br}) = 1 \\ \mathcal{B}(\mathrm{LO}_4^* \to \mathrm{br}) = 0.5, \mathrm{YM} \mathrm{coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
Heavy quarks	$\begin{array}{l} VLQ\;TT \rightarrow Zt + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{3/3}\;T_{3/3}\;T_{3/3} \rightarrow Wt + X \\ VLQ\;T \rightarrow Ht/Zt \\ VLQ\;T \rightarrow Wb \\ VLQ\;P \rightarrow Wb \\ VLQ\;B \rightarrow Hb \end{array}$	2e/2µ/≥3e, multi-chann 2(SS)/≥3 e, 1 e, µ 1 e, µ 0 e,µ	$x \ge 1 \text{ b}, \ge 1 \text{ j}$ $y \ge 1 \text{ b}, \ge 1 \text{ j}$ $y \ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 1 \text{ b}, \ge 3 \text{ j}$ $\ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 2\text{ b}, \ge 1\text{ j}, \ge$	- Yes Yes IJ -	139 36.1 36.1 139 36.1 139	nass 1.4 T nass 1.34 T nass 1.64 1.64 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	SV V 1 TeV 18 TeV 85 TeV 2.0 TeV	$\begin{array}{l} SU(2) \mbox{ doublet} \\ SU(2) \mbox{ doublet} \\ SU(2) \mbox{ doublet} \\ SU(2) \mbox{ singlet, } \kappa_{T} = 0.5 \\ SU(2) \mbox{ singlet, } \kappa_{T} = 0.5 \\ SV(Y \rightarrow Wb) = 1, \ c_{R}(Wb) = 1 \\ SU(2) \mbox{ doublet, } \kappa_{B} = 0.3 \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2j 1j 1b,1j -	-	139 36.7 36.1 20.3 20.3	mass mass mass mass mass 1.6	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{*\pm} \rightarrow W^*W^*$ Higgs triplet $H^{*\pm} \rightarrow \ell\ell$ Higgs triplet $H^{*\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles Vs = 8 TeV	2,3,4 e, µ 2 µ 2,3,4 e, µ (St 2,3,4 e, µ (St 3 e, µ, τ 	$\sum_{j=2}^{2} j$ S) various $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	Yes Yes - - - - - - - - - - - - - - - - - - -	139 36.1 139 20.3 36.1 34.4	mass 910 GeV *mass 350 GeV 1.08 TeV *mass 400 GeV 1.08 TeV toppole mass 1.22 TeV 1.22 TeV 10 ⁻¹ 1 1	3.2 TeV	$m(W_{S}) = 4.1$ TeV, $g_L = g_R$ DY production DY production $g_L = g_R = g_R$ DY production, $g_L = g_R = f_R = f_R$ DY production, $g_L = g_R = g_R$, spin 1/2	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 1812.03673 1905.10130
						· · ·		Mass scale leVi	

Anders Eller Thomsen (U. Basel)

Lots of luminosity

• Marginal increase in energy, but $\sim 20 \times$ more luminosity!

Rather than looking for resonances, we can look for traces of new physics

Probing high-scales through precision

Effective theories

Effective theories are ubiquitous in physics:

- $\blacksquare \ \mathsf{GR} \to \mathsf{Newtonian} \ \mathsf{gravity}$
- $\blacksquare \ \mathsf{QCD} \to \mathsf{nuclear} \ \mathsf{physics}$
- Charge distribution \rightarrow multi-pole expansion

ETs effectively separates energy scales

- ETs can be formulated independently of the full theory
- In QFT the freeze out of heavy fields is formalized by the decoupling theorem, which is the foundation of EFTs Appeluist, Carazzone '75

 All theories break down eventually, so everything is an ET

Effective field theory

High-energy physics manifests as contact interactions in EFTs

$$\mathcal{L}_{\text{EFT}}(\phi) = \mathcal{L}_{d=4}(\phi) + \sum_{d=5}^{\infty} \sum_{k} \frac{C_{d,k}}{\Lambda^{d-4}} \mathcal{O}_{d,k}(\phi)$$

Effective field theory

High-energy physics manifests as contact interactions in EFTs

$$\mathcal{L}_{\text{EFT}}(\phi) = \mathcal{L}_{d=4}(\phi) + \sum_{d=5}^{\infty} \sum_{k} \frac{C_{d,k}}{\Lambda^{d-4}} \mathcal{O}_{d,k}(\phi)$$

LIV DL ·

Bottom–up:

– The use of EFTs allow for a **model-comprehensive** ("model-independent") analysis of deviations from the SM, quantifying possible deviations as an expansion in E/Λ

Top-down:

- Precision computations necessitates the use of EFTs to separate the large scales introduced in BSM physics and avoid large logs
- Many BSM models results in the same EFT, ensuring that computation are reusable: you only need to compute once in the EFT

1-loop matching is often the **leading contribution** from high-scale physics

FCNCs in the SM

■ In BSM models: dipoles, FCNCs, EW precision, ...

Matching EFTs at 1-Loop

The tools of the trade

Matching weakly coupled theories

Matching weakly coupled theories

 $\mathcal{L}_{\mbox{\tiny EFT}}$ should reproduce the physics of $\mathcal{L}_{\mbox{\tiny UV}}$ at energies $E\ll\Lambda$:

$$\mathcal{L}_{\text{EFT}}(\phi) = \mathcal{L}_{d=4}(\phi) + \sum_{d=5}^{\infty} \sum_{\ell=0}^{\infty} \sum_{k} \frac{C_{d,k}^{(\ell)}}{(16\pi^2)^{\ell} \Lambda^{d-4}} \mathcal{O}_{d,k}^{(\ell)}(\phi)$$

Matching weakly coupled theories

 \mathcal{L}_{EFT} should reproduce the physics of \mathcal{L}_{UV} at energies $E \ll \Lambda$:

$$\mathcal{L}_{\text{EFT}}(\phi) = \mathcal{L}_{d=4}(\phi) + \sum_{d=5}^{\infty} \sum_{\ell=0}^{\infty} \sum_{k} \frac{C_{d,k}^{(\ell)}}{(16\pi^2)^{\ell} \Lambda^{d-4}} \mathcal{O}_{d,k}^{(\ell)}(\phi)$$

Advantages of functional matching:

- Does not require prior knowledge of EFT basis
- Well-suited for algorithmic approach
- Computations are manifestly gauge covariant

With expansion by regions we can **separate scales in loop integrals**, e.g., a 2-point function with p^2 , $m^2 \ll M^2$:

$$I = - \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{1}{(k+p)^2 - m^2} \frac{1}{k^2 - M^2}$$

With expansion by regions we can separate scales in loop integrals, e.g., a 2-point function with p^2 , $m^2 \ll M^2$:

$$I = - \bigcirc = \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k+p)^{2} - m^{2}} \frac{1}{k^{2} - M^{2}}$$
$$I_{h} = - \bigcirc = \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{k^{2}} \frac{1}{k^{2} - M^{2}} + \dots \qquad \checkmark^{k^{2} \gtrsim M^{2}}$$

With expansion by regions we can separate scales in loop integrals, e.g., a 2-point function with p^2 , $m^2 \ll M^2$:

$$I = - \bigcirc = \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k+p)^{2} - m^{2}} \frac{1}{k^{2} - M^{2}}$$

$$I_{h} = - \bigcirc = \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{k^{2}} \frac{1}{k^{2} - M^{2}} + \dots$$

$$I_{s} = - \bigcirc = \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k+p)^{2} - m^{2}} \frac{-1}{M^{2}} + \dots$$

With expansion by regions we can **separate scales in loop integrals**, e.g., a 2-point function with p^2 , $m^2 \ll M^2$:

$$I = - \underbrace{\int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k+p)^{2} - m^{2}} \frac{1}{k^{2} - M^{2}}}_{l_{h}}$$

$$I_{h} = - \underbrace{\otimes}_{k} = \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{k^{2}} \frac{1}{k^{2} - M^{2}} + \dots$$

$$I_{s} = \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k+p)^{2} - m^{2}} \frac{-1}{M^{2}} + \dots$$

In dimensional regularization, integrals equal the sum of their hard and soft parts Beneke, Smirnov [hep-ph/9711391]; Jantzen [1111.2589]

$$I = I_h + I_s$$

The regions I_h and I_s are **systematically improvable** power series in $1/M^2$

Separation of scales

Mixed (heavy-light) loop example:

Separation of scales

Mixed (heavy-light) loop example:

The quantum effective action of the UV theory is split in a hard and a soft part:

Separation of scales

Mixed (heavy-light) loop example:

Γ⁽¹⁾_{UV}|_{soft}: long-distance contributions included in 1-loop matrix elements of tree-level EFT operators

$$\left. \Gamma_{\rm UV}^{(1)} \right|_{\rm soft} = \Gamma_{\rm eft}^{(1)}$$

• $\Gamma_{\rm UV}^{(1)}|_{\rm hard}$: short-distance contributions going into the EFT operators

Fuentes-Martin et al. [1607.02142]; Zhang [1610.00710]

$$\left. \Gamma_{\rm UV}^{(1)} \right|_{\rm hard} = \int \! \mathrm{d}^d x \; \mathcal{L}_{\rm EFT}^{(1)}$$

Functional matching

The theory is expanded around the classical fields, $\hat{\eta}$:

$$\mathcal{L}_{\text{UV}}[\eta + \hat{\eta}] = \mathcal{L}_{\text{UV}}[\hat{\eta}] + \eta_i \frac{\delta \mathcal{L}_{\text{UV}}}{\overbrace{}}[\hat{\eta}] + \frac{1}{2} \eta_i \eta_j \frac{\delta^2 \mathcal{L}_{\text{UV}}}{\overbrace{}}[\hat{\eta}] + \dots$$
classical piece
$$\underset{\text{EOM} \to 0}{\overset{}} 0$$
fluctuation operator $\mathcal{Q}_{ij}[\hat{\eta}]$

Functional matching

The theory is expanded around the classical fields, $\hat{\eta}$:

By saddlepoint approximation, the effective action is

$$e^{i\Gamma_{UV}[\hat{\eta}]} = e^{iS_{UV}[\hat{\eta}]} \int \mathcal{D}\eta \, \exp\left(i\int d^d x \, \frac{1}{2}\eta_i \mathcal{Q}_{ij}[\hat{\eta}]\eta_j + \dots\right)$$
$$\implies \Gamma_{UV}[\hat{\eta}] = S_{UV}[\hat{\eta}] + \frac{i}{2}STr \log \mathcal{Q}[\hat{\eta}] + \dots$$

Functional matching

The theory is expanded around the classical fields, $\hat{\eta}$:

By saddlepoint approximation, the effective action is

$$e^{i\Gamma_{UV}[\hat{\eta}]} = e^{iS_{UV}[\hat{\eta}]} \int \mathcal{D}\eta \, \exp\left(i\int d^d x \, \frac{1}{2}\eta_i \mathcal{Q}_{ij}[\hat{\eta}]\eta_j + \dots\right)$$
$$\implies \Gamma_{UV}[\hat{\eta}] = S_{UV}[\hat{\eta}] + \frac{i}{2}\mathsf{STr}\log\mathcal{Q}[\hat{\eta}] + \dots$$

Master formula for 1-loop matching

$$\int d^{d}x \ \mathcal{L}_{EFT}^{(1)} = \frac{i}{2} \operatorname{STr} \log \Delta^{-1} \Big|_{\text{hard}} - \frac{i}{2} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{STr} \left[(\Delta X)^{n} \right] \Big|_{\text{hard}}$$
where
$$\frac{\delta^{2} \mathcal{L}_{UV}}{\delta \eta \, \delta \eta} [\hat{\eta}] = \Delta^{-1} (i\hat{D}, M) - X (i\hat{D}, \hat{\eta}), \qquad \Lambda^{1(2)} \sim \Delta^{-1} \gg X$$

Cohen, Lu, Zhang [2011.02484] [2012.07851]; Fuentes-Martín, König, Pagès, AET, Wilsch [2012.08506]

The traces are evaluated **gauge covariantly** with the CDE:

The traces are evaluated **gauge covariantly** with the CDE:

Example: $STr[\Delta X]|_{hard}$ in a scalar theory with $\mathcal{L}_{int} = -\frac{\lambda}{2}(\Phi^{\dagger}\Phi)\phi^2$

$$STr[\Delta X] = \int_{x} \int_{k} \frac{1}{(k_{\mu} + iD_{\mu})^{2} - M_{\Phi}^{2}} (\lambda \phi^{2})$$
Open covariant derivate

The traces are evaluated **gauge covariantly** with the CDE:

Example: $STr[\Delta X]|_{hard}$ in a scalar theory with $\mathcal{L}_{int} = -\frac{\lambda}{2}(\Phi^{\dagger}\Phi)\phi^2$

$$\operatorname{STr}[\Delta X] = \int_{x} \int_{k} \bigwedge^{n} \frac{1}{(k_{\mu} + iD_{\mu})^{2} - M_{\Phi}^{2}} (\lambda \phi^{2}) \underset{e^{i D \cdot \partial_{k}}}{\bigwedge}$$

The traces are evaluated **gauge covariantly** with the CDE:

Example: $STr[\Delta X]\Big|_{hard}$ in a scalar theory with $\mathcal{L}_{int} = -\frac{\lambda}{2}(\Phi^{\dagger}\Phi)\phi^2$

$$STr[\Delta X] = \int_{X} \int_{k} \frac{1}{(k_{\mu} + iD_{\mu})^{2} - M_{\Phi}^{2}} (\lambda \phi^{2})$$
$$= \int_{X} \int_{k} \frac{1}{(k_{\mu} + i\widetilde{G}_{\mu\nu}\partial_{k}^{\nu})^{2} - M_{\Phi}^{2}} (\lambda \phi^{2})$$
$$\bigvee \sum_{n=0}^{\infty} \frac{(-i)^{n}}{(n+2)n!} (D_{\alpha_{1}} \cdots D_{\alpha_{n}} G_{\mu\nu}) \partial_{k}^{\alpha_{1}} \cdots \partial_{k}^{\alpha_{n}}$$

The traces are evaluated **gauge covariantly** with the CDE:

Example: $STr[\Delta X]|_{hard}$ in a scalar theory with $\mathcal{L}_{int} = -\frac{\lambda}{2}(\Phi^{\dagger}\Phi)\phi^2$

$$STr[\Delta X] = \int_{x} \int_{k} \frac{1}{(k_{\mu} + iD_{\mu})^{2} - M_{\Phi}^{2}} (\lambda \phi^{2})$$

=
$$\int_{x} \int_{k} \frac{1}{(k_{\mu} + i\tilde{G}_{\mu\nu}\partial_{k}^{\nu})^{2} - M_{\Phi}^{2}} (\lambda \phi^{2})$$

=
$$\int_{x} \int_{k} \frac{1}{k^{2} - M_{\Phi}^{2}} \sum_{n=0}^{\infty} \left[\left((\tilde{G}_{\mu\nu}\partial_{k}^{\nu})^{2} - i\{k^{\mu}, \tilde{G}_{\mu\nu}\}\partial_{k}^{\nu} \right) \frac{1}{k^{2} - M_{\Phi}^{2}} \right]^{n} (\lambda \phi^{2})$$

Truncate according to EET order

Number of SMEFT generators (1 gen., dim. 6):

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{C_2}{\Lambda^2}\phi^3\partial^2\phi + \frac{C_3}{\Lambda^2}\phi^2(\partial_\mu\phi)^2$$

$$\mathcal{L} = -\frac{1}{2}\phi\partial^{2}\phi - \frac{1}{2}m^{2}\phi^{2} - \frac{\lambda}{24}\phi^{4} + \frac{C_{1}}{\Lambda^{2}}\phi^{6} + \frac{C_{2}}{\Lambda^{2}}\phi^{3}\partial^{2}\phi + \frac{C_{3}}{\Lambda^{2}}\phi^{2}(\partial_{\mu}\phi)^{2}$$

Exact simplification (linear):

IBP, Dirac identities, group identities, commutation relations,...

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3\partial^2\phi$$

$$\mathcal{L} = -\frac{1}{2}\phi\partial^{2}\phi - \frac{1}{2}m^{2}\phi^{2} - \frac{\lambda}{24}\phi^{4} + \frac{C_{1}}{\Lambda^{2}}\phi^{6} + \frac{C_{2}}{\Lambda^{2}}\phi^{3}\partial^{2}\phi + \frac{C_{3}}{\Lambda^{2}}\phi^{2}(\partial_{\mu}\phi)^{2}$$

Exact simplification (linear):

IBP, Dirac identities, group identities, commutation relations,...

$$\mathcal{L} = -\frac{1}{2}\phi\partial^{2}\phi - \frac{1}{2}m^{2}\phi^{2} - \frac{\lambda}{24}\phi^{4} + \frac{C_{1}}{\Lambda^{2}}\phi^{6} + \frac{3C_{2} - C_{3}}{3\Lambda^{2}}\phi^{3}\partial^{2}\phi$$

On-shell equivalence (non-linear):

Field redefinition:
$$\phi \longrightarrow \phi + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3$$

$$\mathcal{L} \longrightarrow -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \left(\frac{\lambda}{24} + \frac{(3C_2 - C_3)m^2}{3\Lambda^2}\right)\phi^4 + \frac{18C_1 - \lambda(3C_2 - C_3)}{18\Lambda^2}\phi^6$$
Simplification and basis reduction

$$\mathcal{L} = -\frac{1}{2}\phi\partial^{2}\phi - \frac{1}{2}m^{2}\phi^{2} - \frac{\lambda}{24}\phi^{4} + \frac{C_{1}}{\Lambda^{2}}\phi^{6} + \frac{C_{2}}{\Lambda^{2}}\phi^{3}\partial^{2}\phi + \frac{C_{3}}{\Lambda^{2}}\phi^{2}(\partial_{\mu}\phi)^{2}$$

Exact simplification (linear):

IBP, Dirac identities, group identities, commutation relations,...

$$\mathcal{L} = -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{24}\phi^4 + \frac{C_1}{\Lambda^2}\phi^6 + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3\partial^2\phi$$

On-shell equivalence (non-linear):

Field redefinition:
$$\phi \longrightarrow \phi + \frac{3C_2 - C_3}{3\Lambda^2}\phi^3$$

$$\mathcal{L} \longrightarrow -\frac{1}{2}\phi\partial^2\phi - \frac{1}{2}m^2\phi^2 - \left(\frac{\lambda}{24} + \frac{(3C_2 - C_3)m^2}{3\Lambda^2}\right)\phi^4 + \frac{18C_1 - \lambda(3C_2 - C_3)}{18\Lambda^2}\phi^6$$

Removal of evanescent operators: (in application of fermion Fierz identities) We will return to this point

Example: Integrating out heavy fermion in the fundamental representation of SU(3)

$$\begin{split} & \text{In}[12]^{\pm} \\ & \text{LEFT // NiceForm} \\ \\ & \text{Dut}[12]//NiceForm= \\ & \frac{7}{540} \ \hbar \ g^2 \ \frac{1}{Mg^2} \ \left(D_\mu G^{\mu\nu\Lambda} \right)^2 + \\ & \frac{1}{40} \ \hbar \ g^2 \ \frac{1}{Mg^2} \ G^{\mu\nu\Lambda} \ D_2 G^{\mu\nu\Lambda} + \frac{7}{540} \ \hbar \ g^2 \ \frac{1}{Mg^2} \ D_\mu G^{\mu\nu\Lambda} \ D_\nu G^{\mu\rho\Lambda} - \\ & \frac{1}{180} \ \hbar \ g^2 \ \frac{1}{Mg^2} \ D_\nu G^{\mu\nu\Lambda} \ D_\rho G^{\mu\rho\Lambda} + \frac{4}{40} \ \hbar \ g^2 \ \frac{1}{Mg^2} \ G^{\mu\nu\Lambda} \ D_\nu D_\rho G^{\mu\rho\Lambda} + \\ & \frac{1}{40} \ \hbar \ g^2 \ \frac{1}{Mg^2} \ G^{\mu\nu\Lambda} \ D_\rho D_\rho G^{\mu\rho\Lambda} - \frac{1}{24} \ \hbar \ g^3 \ \frac{1}{Mg^2} \ G^{\mu\nu\Lambda} \ G^{\mu\rho\Lambda} \ G^{\mu} \ G^{$$

0 Example: Integrating out heavy fermion in the fundamental representation of SU(3) In[12]:= LEFT // NiceForm Out[12]//NiceForm= $\frac{7}{540}$ $\hbar g^2 \frac{1}{M m^2} (D_\rho G^{\mu\nu A})^2 +$ L. $\frac{1}{40} \hbar g^2 \frac{1}{Mm^2} G^{\mu\nu A} D^2 G^{\mu\nu A} + \frac{7}{540} \hbar g^2 \frac{1}{Mm^2} D_\rho G^{\mu\nu A} D_\nu G^{\mu\rho A} -\frac{1}{180} \hbar g^2 \frac{1}{M \pi^2} D_{\nu} G^{\mu\nu A} D_{\rho} G^{\mu\rho A} + \frac{1}{40} \hbar g^2 \frac{1}{M \pi^2} G^{\mu\nu A} D_{\nu} D_{\rho} G^{\mu\rho A} +$ $\frac{1}{40} \hbar g^2 \frac{1}{M \pi^2} G^{\mu\nu A} D_{\rho} D_{\nu} G^{\mu\rho A} - \frac{1}{24} \hbar g^3 \frac{1}{M \pi^2} G^{\mu\nu A} G^{\mu\rho B} G^{\nu\rho C} f^{ABC}$ $\mathcal{L}_{\mathsf{EFT}} = \sum_{i} C_i \mathcal{O}_i \in O$

 \mathcal{O}_1

Example: Integrating out heavy fermion in the fundamental representation of SU(3)

$$\begin{array}{l} \displaystyle \frac{7}{540} ~ \hbar ~ g^2 ~ \frac{1}{M\psi^2} ~ \left(D_{\mu}G^{\mu\nu A} \right)^2 ~ + \\ \displaystyle \frac{1}{40} ~ \hbar ~ g^2 ~ \frac{1}{M\psi^2} ~ G^{\mu\nu A} ~ D^2 G^{\mu\nu A} ~ + \frac{7}{540} ~ \hbar ~ g^2 ~ \frac{1}{M\psi^2} ~ D_{\mu}G^{\mu\nu A} ~ D_{\nu}G^{\mu\nu A} ~ - \\ \displaystyle \frac{1}{180} ~ \hbar ~ g^2 ~ \frac{1}{M\psi^2} ~ G_{\mu\nu A} ~ D_{\mu}G^{\mu\nu A} ~ + \frac{1}{40} ~ \hbar ~ g^2 ~ \frac{1}{M\psi^2} ~ G^{\mu\nu A} ~ D_{\nu}D_{\mu}G^{\mu\nu A} ~ + \\ \displaystyle \frac{1}{40} ~ \hbar ~ g^2 ~ \frac{1}{M\psi^2} ~ G^{\mu\nu A} ~ D_{\mu}D_{\nu}G^{\mu\nu A} ~ - \\ \displaystyle \frac{1}{24} ~ \hbar ~ g^2 ~ \frac{1}{M\psi^2} ~ G^{\mu\nu A} ~ D_{\mu}B_{\nu}G^{\mu\nu A} ~ - \\ \displaystyle \frac{1}{24} ~ \hbar ~ g^3 ~ \frac{1}{M\psi^2} ~ G^{\mu\nu A} ~ G^{\mu$$

$$\mathcal{L}_{\mathsf{EFT}} = \sum_{i} C_{i} \mathcal{O}_{i} \in O$$

 $I \subseteq O$ is the space of all operator identities, e.g., IBP relations such as

$$\mathcal{O}_1+2\mathcal{O}_3=0$$

is interpreted as

$$\mathcal{O}_1 + 2\mathcal{O}_3 \in I$$

Example: Integrating out heavy fermion in the fundamental representation of SU(3)

$$\begin{array}{l} \displaystyle \frac{7}{540} \ \hbar \ g^2 \ \frac{1}{M \chi^2} \ \left(D_{\mu} G^{\mu\nu A} \right)^2 + \\ \\ \displaystyle \frac{1}{40} \ \hbar \ g^2 \ \frac{1}{M \chi^2} \ \left(D_{\mu} G^{\mu\nu A} \right)^2 G^{\mu\nu A} + \frac{7}{540} \ \hbar \ g^2 \ \frac{1}{M \chi^2} \ D_{\mu} G^{\mu\nu A} \ D_{\nu} G^{\mu\nu A} - \\ \\ \displaystyle \frac{1}{180} \ \hbar \ g^2 \ \frac{1}{M \chi^2} \ O_{\nu} G^{\mu\nu A} \ D_{\rho} G^{\mu\nu A} + \frac{1}{40} \ \hbar \ g^2 \ \frac{1}{M \chi^2} \ G^{\mu\nu A} \ D_{\nu} D_{\rho} G^{\mu\nu A} + \\ \\ \displaystyle \frac{1}{40} \ \hbar \ g^2 \ \frac{1}{M \chi^2} \ G^{\mu\nu A} \ D_{\nu} D_{\mu} G^{\mu\nu A} + \frac{1}{24} \ \hbar \ g^3 \ \frac{1}{M \chi^2} \ G^{\mu\nu A} \ G^{\mu\nu A} \ G^{\mu\nu A} + \\ \end{array}$$

$$\mathcal{L}_{\mathsf{EFT}} = \sum_{i} C_{i} \mathcal{O}_{i} \in O$$

 $I \subseteq O$ is the space of all operator identities, e.g., IBP relations such as

$$\mathcal{O}_1 + 2\mathcal{O}_3 = 0$$

is interpreted as

$$\mathcal{O}_1+2\mathcal{O}_3\in \mathit{I}$$

Example: Integrating out heavy fermion in the fundamental representation of SU(3)

$$\begin{array}{c} \displaystyle \frac{7}{540} \ \hbar \ g^2 \ \frac{1}{M g^2} \ \left(D_\rho G^{\mu\nu A} \right)^2 + \\ \\ \displaystyle \frac{1}{40} \ \hbar \ g^2 \ \frac{1}{M u^2} \ G^{\mu\nu A} \ D_{\rho} G^{\mu\nu A} + \frac{7}{540} \ \hbar \ g^2 \ \frac{1}{M u^2} \ D_{\rho} G^{\mu\nu A} \ D_{\nu} G^{\mu\rho A} - \\ \\ \displaystyle \frac{1}{180} \ \hbar \ g^2 \ \frac{1}{M u^2} \ D_{\nu} G^{\mu\nu A} \ D_{\rho} G^{\mu\rho A} + \frac{1}{40} \ \hbar \ g^2 \ \frac{1}{M u^2} \ G^{\mu\nu A} \ D_{\nu} D_{\rho} G^{\mu\rho A} + \\ \\ \displaystyle \frac{1}{40} \ \hbar \ g^2 \ \frac{1}{M u^2} \ G^{\mu\nu A} \ G^{\mu\rho B} \ G^{\nu\nu C} \ f^{ABC} \end{array}$$

$$\mathcal{L}_{\mathsf{EFT}} = \sum_{i} C_i \mathcal{O}_i \in O$$

With **linear algebra** on the basis of *I* we find a simple representative element for $[\mathcal{L}_{EFT}] \in O/I$:

In[13]:= LEFT // GreensSimplify // NiceForm
Out[13]//NiceForm=

$$-\frac{1}{15} ~\hbar~g^2~\frac{1}{M \varpi^2}~D_\nu G^{\mu\nu A}~D_\rho G^{\mu\rho A}-\frac{1}{180}~\hbar~g^3~\frac{1}{M \varpi^2}~G^{\mu\nu A}~G^{\mu\rho B}~G^{\nu\rho C}~f^{ABC}$$

 $I \subseteq O$ is the space of all operator identities, e.g., IBP relations such as

$$\mathcal{O}_1+2\mathcal{O}_3=0$$

is interpreted as

$$\mathcal{O}_1 + 2\mathcal{O}_3 \in I$$

To make your way through the BSM jungle

Automated EFT matching

Fuentes-Martín, König, Pagès, AET, Wilsch [2212.04510]

- Matchete v0.1 is a Mathematica package
- Matching of any model with heavy scalars/fermions
- Simple and intuitive input/output
- Handles all group theory
- Simplifies to EFT basis*

Automated EFT matching

- Matchete v0.1 is a Mathematica package
- Matching of any model with heavy scalars/fermions
- Simple and intuitive input/output
- Handles all group theory
- Simplifies to EFT basis*

Future plans:

- Handling of evanescent contribution
- SSB and heavy vectors
- Interface with FFT tool chain
- 1-loop RG computations

Example: SM + Vector-like lepton

	Setup
	SM Lagrangian
In[3]:=	LSM = LoadModel["SN"];
	Define new field
In[4]:=	DefineField[EE, Fermion, Charges → {U1Y[-1]}, Mass → {Heavy, ME}]
	Define new coupling
In[5]:=	DefineCoupling[yE, EFT0rder → 0, Indices → {Flavor}]
	Write interactions
In[6]:=	Lint = -yE[p] × Bar@l[i, p] ++ PR ++ EE[] × H[i] // PlusHc; Lint // NiceForm
all print	$-\overline{y}E^{p}H_{1}\left(EE\cdot P_{L}\cdot L^{1p}\right)-yE^{p}H^{1}\left(T_{1}^{p}\cdot P_{R}\cdot EE\right)$
	Define full UV Lagrangian
In[8]:=	LUV = LSM + FreeLag[EE] + Lint; LUV // NiceForm
ut[9]//Nic	$\begin{split} &-\frac{1}{4} \mathcal{B}^{\text{intro}} = \frac{1}{4} \mathcal{G}^{\text{intro}} 2 - \frac{1}{4} \mathcal{G}^{\text{intro}} 12 + \mathcal{D}_{\mu} \mathcal{H}_{1} \mathcal{D}_{\mu} \mathcal{H}^{1} + \mu^{2} \mathcal{H}_{1} \mathcal{H}^{1} + i \left(\vec{q}_{p}^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} d^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{R} \cdot \mathcal{D}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} \mathcal{P}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} e^{p} \right) + i \left(e^{p} \cdot \mathcal{P}_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} e^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} e^{p} \right) + i \left(e^{p} \cdot q^{p} \right) + i \left(e^{p} \cdot \gamma_{\mu} e^{p} \right) + i \left(e^{p} \cdot q^{p} \right) + i \left(e^{p$

Anders Eller Thomsen (U. Basel)

16

Example: SM + Vector-like lepton

1	Matching				
In[10]:=	LEFT = Match[LUV, LoopOrder \rightarrow 1, EFTOrder \rightarrow 6] /. $e^{-1} \rightarrow 0$;				
in[11]:=	<pre>11:= LEFTOnShell = LEFT // EOMSimplify; Lengthe%</pre>				
	EOMSimplify: The Lagrangian contains terms of lower power than dimension 4. Defining effective couplings and assuming these terms to be dimension 4. Use 'PrintEffectiveCouplings' and 'ReplaceEffectiveCouplings' to recover explicit expressions.				
» .	Added new CG cg1 with indices {Bar[SU2L[fund]], SU2L[adj], Bar[SU2L[fund]]}	7 P			
Out[12]=	67				
In[13]:= Out[13]//Ni	<pre>\[13]:* SelectOperatorClass[LEFTOnShell, {e, Bar@e, H, Bar@H}, 1] // GreensSimplify // NiceForm [13]//NiceForm=</pre>				
	$ \frac{i}{360} \frac{\hbar}{ME^2} \left(48 \text{ gV}^4 \delta^{\text{pr}} + 5 \overline{\text{yE}}^s \left(3 \text{ yE}^t \overline{\text{Ve}}^{tr} \text{ Ye}^{sp} \left(1 + 6 \text{ Log} \left[\frac{\overline{\mu}^2}{ME^2} \right] \right) - 2 \text{ yE}^s \text{ gV}^2 \left(13 + 6 \text{ Log} \left[\frac{\overline{\mu}^2}{ME^2} \right] \right) \delta^{\text{pr}} \right) \right) \\ \left(-D_{\mu}H_1 H^1 \left(\overline{e}^r \cdot \gamma_{\mu} P_R \cdot e^p \right) + H_1 D_{\mu}H^1 \left(\overline{e}^r \cdot \gamma_{\mu} P_R \cdot e^p \right) \right) $				

1+ [

 $Q_{He}^{pr} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$

Example: SM + Vector-like lepton

$$\begin{split} & \text{LEFTOShell } // \text{ MiceForm} \\ & \text{deforms} \\ & = \frac{1}{4} \operatorname{G}^{\text{crivA}_2} - \frac{1}{4} \operatorname{W}^{\text{vYE2}} + \left(-\frac{1}{4} - \frac{1}{3} \wedge g Y^2 \log \left[\frac{\bar{\mu}^2}{\mathsf{ME}^2} \right] \right) \operatorname{B}^{\text{vYE}} + D_{\mu} \mathsf{H}_{0} \mathsf{H}_{1}^{H} + \\ & \left(\mathsf{cH}_{H} + \frac{1}{6} \wedge \overline{\mathsf{yE}}^{P} \mathsf{yE}^{P} \mathsf{vEH} + \frac{1}{\mathsf{HE}^2} \left[2 \operatorname{CHH}_{-3} \operatorname{ME}^2 \left(1 + 2 \log \left[\frac{\bar{\mu}^2}{\mathsf{ME}^2} \right) \right) \right) \mathsf{H}_{1} \operatorname{H}_{1}^{H} + 1 \left(\operatorname{d}_{n}^{r} \cdot \gamma_{\mu} \mathsf{P}_{n} \cdot \mathsf{D}_{\mu} \operatorname{d}^{\text{dp}} \right) \delta^{\text{DF}} + \\ & 1 \left(\mathsf{e}^{r} \cdot \gamma_{\mu} \mathsf{P}_{n} \cdot \mathsf{D}_{\mu} \mathsf{e}^{0} \right) \delta^{\text{DF}} + 1 \left(\mathsf{U}_{1}^{r} \cdot \gamma_{\mu} \mathsf{P}_{n} \cdot \mathsf{D}_{\mu} \mathsf{U}^{1} \right) \delta^{\text{DF}} + 1 \left(\operatorname{d}_{n}^{r} + \gamma_{\mu} \mathsf{P}_{n} \cdot \mathsf{D}_{\mu} \operatorname{d}^{\text{dp}} \right) \delta^{\text{DF}} + \\ & \left(-\frac{1}{2} \lambda \mathsf{P}_{n} \wedge \left[-\frac{1}{2} \Sigma \mathsf{E}^{P} \left(\mathsf{4} \mathsf{yE}^{r} \cdot \mathsf{V}^{\text{CT}} \times \operatorname{Ve}^{\text{S}} \left(1 + \log \left[\frac{\bar{\mu}^2}{\mathsf{HE}^2} \right] \right) - \mathcal{P}_{P}^{P} \left(-2 \, \overline{\mathsf{yE}}^{r} \, \mathsf{yE}^{r} \log \right) \delta^{\text{DF}} + \\ & \left(-\frac{1}{2} \lambda \mathsf{v}_{n} \wedge \left[-\frac{1}{2} \Sigma \mathsf{P}_{n} \right] \left(2 \operatorname{V}^{q} - 5 \, \overline{\mathsf{yE}}^{P} \, \mathsf{yE}^{P} \, \mathsf{gV}^{2} \left(1 3 + 6 \log \left[\frac{\bar{\mu}^2}{\mathsf{HE}^2} \right] \right) + \\ & 5 \, \overline{\mathsf{yE}}^{P} \left[-12 \left(\operatorname{yE}^{r} \, \mathsf{yE}^{P} \, \mathsf{yE}^{r} \, \mathsf{e}^{\text{V}} \, \mathsf{e}^{\text{CT}} \, \mathsf{v}^{\text{CT}} \times \mathsf{v}^{\text{PB}} - 2 \, \mathsf{yE}^{P} \right) \right] \mathsf{h}_{1} + \mathsf{H}_{2} \, \mathsf{h}_{2} \left(5 + 6 \log \left[\frac{\bar{\mu}^2}{\mathsf{HE}^2} \right] \right) \right] \mathsf{H}_{1} \, \mathsf{H}_{3} \, \mathsf{H}_{1}^{4} + \\ & \left(-\overline{\mathsf{vG}}^{\text{DT}} + \frac{1}{12} \lambda \, \overline{\mathsf{yE}}^{2} \, \mathsf{yE}^{2} \, \mathsf{vG}^{\text{DT}} \, \frac{1}{\mathsf{HE}^{2}} \left(-4 \, \mathsf{CHH} + 3 \, \mathsf{HE}^{2} \left(1 + 2 \log \left[\frac{\bar{\mu}^2}{\mathsf{HE}^2} \right) \right) \right) \mathsf{H}_{1} \left(\operatorname{d}^{r}_{n} \circ \mathsf{e}^{n} \, \mathsf{v}^{n} \, \mathsf{v}^{n} \right) \\ & \left(-\overline{\mathsf{vG}}^{\text{CT}} + \frac{1}{2} \lambda \, \overline{\mathsf{yE}}^{2} \, \operatorname{d}^{2} \, \mathsf{s}^{2} \, \left(2 \, \mathsf{yE}^{p} \, \mathsf{v}^{\text{CT}} \left(1 + 2 \log \left[\frac{\bar{\mu}^2}{\mathsf{HE}^2} \right) \right) \right) \mathsf{H}_{1} \left(\mathsf{U}_{1}^{r} \, \mathsf{v}^{n} \, \mathsf{e}^{n} \, \mathsf{h}^{2} \right) \right) \\ & \left(-\overline{\mathsf{vG}} \, \mathsf{t}^{2} \, \frac{1}{4} \, \widetilde{\mathsf{yE}}^{2} \, \operatorname{d}^{2} \, \mathsf{s}^{2} \, \mathsf{V}^{\text{CT}} \, \mathsf{s}^{2} \left(1 + 2 \log \left[\frac{\bar{\mu}^2}{\mathsf{HE}^2} \right) \right) \right) \right) \mathsf{H}_{1} \left(\mathsf{U}_{1}^{r} \, \mathsf{v}^{2} \, \mathsf{v}^{n} \, \mathsf{h}^{2} \, \mathsf{h}^{2} \, \mathsf{s}^{2} \right) \right) \\ & \left(-\overline{\mathsf{vG}} \, \mathsf{t}^{2} \, \frac{1}{4} \, \operatorname{d}^{2} \, \mathsf{s}^{2} \, \mathsf{s}^{2} \, \mathsf{v}^{2} \,$$

Anders Eller Thomsen (U. Basel)

Evanescent Operators

Why can't QFT just play nice?

EFT from a 2HDM

Example: SM + leptophilic Higgs, $\Phi \sim (\mathbf{1}, \mathbf{2})_{1/2}$:

$$\mathcal{L} \supset \mathcal{L}_{\text{SM}} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - M_{\Phi}^2 \Phi^{\dagger} \Phi - \left(y_{\Phi e}^{pr} \,\overline{\ell}_{p} \Phi e_r + \text{h.c.} \right) + \dots$$

EFT from a 2HDM

Example: SM + leptophilic Higgs, $\Phi \sim (1, 2)_{1/2}$:

 $\mathcal{L} \supset \mathcal{L}_{\scriptscriptstyle SM} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - M_{\Phi}^2 \, \Phi^{\dagger} \Phi - \left(y_{\Phi e}^{pr} \, \overline{\ell}_{p} \Phi e_r + \text{h.c.} \right) + \dots$

EFT from a 2HDM

Example: SM + leptophilic Higgs, $\Phi \sim (1, 2)_{1/2}$:

 $\mathcal{L} \supset \mathcal{L}_{\scriptscriptstyle SM} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - M_{\Phi}^2 \Phi^{\dagger} \Phi - \left(y_{\Phi e}^{pr} \overline{\ell}_{\rho} \Phi e_r + \text{h.c.} \right) + \dots$

Below the scale $M_{\Phi} \gg v_{\text{EW}}$

$$\mathcal{L}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} + C_{\ell e}^{prst} R_{\ell e}^{prst}$$

But the tree-level operator $R_{\ell e}$ is not part of the Warsaw basis

Changing basis in an EFT

In d = 4 dimensions, $\mathcal{L}_{\text{EFT}} = \widetilde{\mathcal{L}}_{\text{EFT}}$, where

$$\begin{split} \mathcal{L}_{\text{EFT}} &\supset C_{eW}^{pr} Q_{eW}^{pr} + C_{\ell e}^{prst} R_{\ell e}^{prst} \\ \widetilde{\mathcal{L}}_{\text{EFT}} &\supset C_{eW}^{pr} Q_{eW}^{pr} - \frac{1}{2} C_{\ell e}^{ptsr} Q_{\ell e}^{prst} \end{split}$$

$$R_{\ell e}^{prst} = (\bar{\ell}_p e_r)(\bar{e}_s \ell_t)$$
$$Q_{\ell e}^{prst} = (\bar{\ell}_p \gamma_\mu \ell_t)(\bar{e}_s \gamma^\mu e_r)$$

Changing basis in an EFT

In d = 4 dimensions, $\mathcal{L}_{EFT} = \widetilde{\mathcal{L}}_{EFT}$, where

$$\begin{aligned} \mathcal{L}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} + C_{\ell e}^{prst} R_{\ell e}^{prst} \\ \widetilde{\mathcal{L}}_{\text{EFT}} \supset C_{eW}^{pr} Q_{eW}^{pr} - \frac{1}{2} C_{\ell e}^{ptsr} Q_{\ell e}^{prst} \end{aligned}$$

$$R_{\ell e}^{prst} = (\bar{\ell}_p e_r)(\bar{e}_s \ell_t)$$
$$Q_{\ell e}^{prst} = (\bar{\ell}_p \gamma_\mu \ell_t)(\bar{e}_s \gamma^\mu e_r)$$

But the 1-loop EFT amplitudes are different!

$$i\left(\mathcal{A}_{eH\to\ell W}-\widetilde{\mathcal{A}}_{eH\to\ell W}\right)=\frac{g_2}{64\pi^2}\left[C_{\ell e}\right]^{prst}y_e^{ts}\left(\bar{u}\tau^{\prime}\sigma_{\mu\nu}P_R u\right)q^{\mu}\varepsilon^{*\nu}$$

Changing basis in an EFT

In d = 4 dimensions, $\mathcal{L}_{EFT} = \widetilde{\mathcal{L}}_{EFT}$, where

$$\begin{split} \mathcal{L}_{\text{EFT}} &\supset C_{eW}^{pr} Q_{eW}^{pr} + C_{\ell e}^{prst} R_{\ell e}^{prst} \\ \widetilde{\mathcal{L}}_{\text{EFT}} &\supset C_{eW}^{pr} Q_{eW}^{pr} - \frac{1}{2} C_{\ell e}^{ptsr} Q_{\ell e}^{prst} \end{split}$$

$$R_{\ell e}^{prst} = (\bar{\ell}_p e_r)(\bar{e}_s \ell_t)$$
$$Q_{\ell e}^{prst} = (\bar{\ell}_p \gamma_\mu \ell_t)(\bar{e}_s \gamma^\mu e_r)$$

But the 1-loop EFT amplitudes are different!

$$i\left(\mathcal{A}_{eH\to\ell W}-\widetilde{\mathcal{A}}_{eH\to\ell W}\right)=\frac{g_2}{64\pi^2}\left[C_{\ell e}\right]^{prst}y_e^{ts}\left(\bar{u}\tau^{\prime}\sigma_{\mu\nu}P_R u\right)q^{\mu}\varepsilon^{*\nu}$$

For $d \neq 4$, there is an **evanescent operator:**

$$R_{\ell e}^{prst} = -\frac{1}{2}Q_{\ell e}^{ptsr} + E_{\ell e}^{prst}, \qquad \qquad E_{\ell e}^{prst} \xrightarrow{d \to 4} 0$$

Evanescent operators

An evanescent operator E is an operator satisfying

$$\operatorname{rank}(E) = \epsilon \xrightarrow{d \to 4} 0$$

Evanescent contributions have long been accounted for in the LEFT (Weak Effective Hamiltonian). Not so much in BSM context

Buras, Weisz '90; Dugan, Grinstein '91; Herrlich, Nierste [hep-ph/9412375];...

An evanescent operator E is an operator satisfying

$$\operatorname{rank}(E) = \epsilon \xrightarrow{d \to 4} 0$$

Evanescent contributions have long been accounted for in the LEFT (Weak Effective Hamiltonian). Not so much in BSM context

Buras, Weisz '90; Dugan, Grinstein '91; Herrlich, Nierste [hep-ph/9412375];...

The physical contributions from evanescent operators are finite and local

$$\mathcal{P}\left(\begin{array}{c} \mathcal{E} \\ \mathcal{P} \\ \mathcal{$$

An **evanescent operator** *E* is an operator satisfying

$$\operatorname{rank}(E) = \epsilon \xrightarrow{d \to 4} 0$$

Evanescent contributions have long been accounted for in the LEFT (Weak Effective Hamiltonian). Not so much in BSM context

Buras, Weisz '90; Dugan, Grinstein '91; Herrlich, Nierste [hep-ph/9412375];...

The physical contributions from evanescent operators are finite and local

$$\mathcal{P}\left(\begin{array}{c} \mathcal{F} \\ \mathcal{$$

e.g., in the 2HDM example

$$E_{\ell e}^{prst} \longrightarrow -\frac{g_L y_e^{ts}}{128\pi^2} Q_{eW}^{pr} + [\text{many other contributions}]$$

The physical projector

Choosing a set of identities allows for defining the **physical projector** \mathcal{P} :

Reduction of Dirac structures for 4-fermion operators, e.g.,

 $(\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}P_{L})\otimes[\gamma_{\lambda}\gamma_{\nu}\gamma_{\mu}P_{L}] = 4(1-2\epsilon)(\gamma^{\mu}P_{L})\otimes[\gamma_{\mu}P_{L}] + E_{LL}^{[3]}$

Fierz identities for 4-fermion operators, e.g.,

 $(P_{\mathsf{R}}) \otimes [P_{\mathsf{L}}] = -\frac{1}{2}(\gamma_{\mu}P_{\mathsf{L}}] \otimes [\gamma_{\mu}P_{\mathsf{R}}) + E_{\mathsf{Fierz}}(P_{\mathsf{R}}, P_{\mathsf{L}})$

• Other identities involving γ_5 and/or the Levi-Civita tensor, e.g.,

$$\varepsilon_{\mu\nu\rho\sigma}\sigma^{\rho\sigma}=2i\sigma_{\mu\nu}\gamma_5+E^{(\epsilon\cdot\sigma)}_{\mu\nu}$$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g,\eta).$$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$

Scheme		MS
ion	$\mathcal{P}: O^a$	$ar{g}_a=g_a+\delta g_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^{i}	$ar\eta_i=\eta_i+\delta\eta_i$
Phys. eff. action $\mathcal{P}\Gamma$		$\int_{x} \overline{g}_{\mathfrak{d}} O^{\mathfrak{d}} + \mathcal{P} \overline{\Gamma}(g, \eta)$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$

Scheme		MS	Compensated
ion	\mathcal{P} : O^a	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^i	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i = + \left\lfloor \eta_i ight angle$
Phys. eff. action $\mathcal{P}\Gamma$		$\int_{x} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g, \eta)$	$\int_x (ar{g}_{a}+\Delta g_{a})O^a \ + \mathcal{P}\overline{\Gamma}(g,\eta) - \int_x \Delta g_a O^a$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$
Loop diagrams, tree-level couplings

Scheme		MS	Compensated
ion	\mathcal{P} : O^a	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^{i}	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i = + \left\lfloor \eta_i ight angle$
Phys. eff. action $\mathcal{P}\Gamma$		$\int_{x} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g, \eta)$	$\int_x (ar{g}_{a}+\Delta g_{a})O^a \ + \mathcal{P}\overline{\Gamma}(g,\eta) - \int_x \Delta g_a O^a$

The evanescent contribution is defined by

local, finite

$$\int_{X} \Delta g_{a} O^{a} \equiv \mathcal{P}\left[\overbrace{\overline{\Gamma}(g,\eta) - \overline{\Gamma}(g,0)}^{\bullet}\right]$$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} \left(\bar{g}_{a} O^{a} + \bar{\eta}_{i} E^{i} \right) + \overline{\Gamma}(g, \eta).$$

Scheme		MS	Compensated
ion	$\mathcal{P}: \mathcal{O}^{a}$	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^{i}	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i = + \left\lfloor \eta_i ight angle$
Phys. eff. action $\mathcal{P}\Gamma$		$\int_{X} \bar{g}_{a} O^{a} + \mathcal{P}\overline{\Gamma}(g,\eta)$	$\int_{x} (ar{g}_{a} + \Delta g_{a}) O^{a} \ + \mathcal{P}\overline{\Gamma}(g,0)$

The evanescent contribution is defined by

local, finite

$$\int_{x} \Delta g_{a} O^{a} \equiv \mathcal{P}\left[\overbrace{\overline{\Gamma}(g,\eta) - \overline{\Gamma}(g,0)}^{\bullet}\right]$$

tree-level couplings

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$
Loop diagrams, tree-level couplings

a 11

Scheme		MS	Compensated	Subtracted
ion	\mathcal{P} : O^a	$ar{g}_{a}=g_{a}+\delta g_{a}$	$(\bar{g}_a + \Delta g_a) - \Delta g_a$	$ar{g}_a+\Delta g_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^{i}	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i + \left\lfloor \eta_i \right\rfloor$	$\delta \eta_i$
Phys. eff. action $\mathcal{P}\Gamma$		$\int_{X} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g,\eta)$	$\int_{X} (ar{g}_{a} + \Delta g_{a}) O^{a} \ + \mathcal{P}\overline{\Gamma}(g,0)$	$\int_{X} (\bar{g}_a + \Delta g_a) O^a + \mathcal{P}\overline{\Gamma}(g,0)$

The evanescent contribution is defined by

local, finite

$$\int_{X} \Delta g_{a} O^{a} \equiv \mathcal{P}\left[\overline{\overline{\Gamma}(g,\eta)} - \overline{\overline{\Gamma}(g,0)}\right]$$

For an EFT Lagrangian $\mathcal{L} = \bar{g}_a O^a + \bar{\eta}_i E^i$, the 1-loop effective action is

$$\Gamma = \int_{x} (\bar{g}_{a}O^{a} + \bar{\eta}_{i}E^{i}) + \overline{\Gamma}(g, \eta).$$
Loop diagrams, tree-level couplings

Scheme		MS	Compensated	Subtracted
ion	$\mathcal{P}: \mathcal{O}^a$	$ar{g}_a = g_a + \delta g_a$	$(\bar{g}_a + \Delta g_a) - \Delta \bar{g}_a$	$ar{g}_a+\Delta g_a$
Act	$\mathcal{E}_{\mathcal{P}}$: E^{i}	$ar\eta_i=\eta_i+\delta\eta_i$	$\delta \eta_i + \left\lfloor \eta_i \right\rfloor$	$\delta \eta_i$
Phys. eff. action $\mathcal{P}\Gamma$		$\int_{X} \bar{g}_{a} O^{a} + \mathcal{P} \overline{\Gamma}(g,\eta)$	$\int_{X} (ar{g}_{a} + \Delta g_{a}) O^{a} \ + \mathcal{P}\overline{\Gamma}(g,0)$	$\int_{x} (ar{g}_{a} + \Delta g_{a}) O^{a} + \mathcal{P}\overline{\Gamma}(g,0)$

The evanescent contribution is defined by

local, finite

$$\left[\Delta g_a O^a \equiv \mathcal{P}\left[\overline{\overline{\Gamma}(g,\eta) - \overline{\Gamma}(g,0)}\right]\right]$$

Handling evanescent contributions means computing Δg

Application in the SMEFT

Tree-level BSM matching to the SMEFT can produce **49 different, redundant four-fermion operators**, which will result in non-trivial evanescent contribution at 1-loop order, e.g.,

$$R_{\ell e} = (\bar{\ell} e)(\bar{e}\ell) \qquad R_{q u}^{(8)} = (\bar{q}T^{A}u)(\bar{u}T^{a}q) \qquad R_{u^{c}elq^{c}} = (\bar{u}^{c}e)(\bar{l}q^{c})$$

Application in the SMEFT

Tree-level BSM matching to the SMEFT can produce **49 different, redundant four-fermion operators**, which will result in non-trivial evanescent contribution at 1-loop order, e.g.,

$$R_{\ell e} = (\bar{\ell} e)(\bar{e}\ell) \qquad R_{qu}^{(8)} = (\bar{q}T^A u)(\bar{u}T^a q) \qquad R_{u^c e l q^c} = (\bar{u}^c e)(\bar{l}q^c)$$

For dimension-6 SMEFT, evanescent operators contribute through 6 covariant trace topologies

Fuentes-Martín, König, Pagès, AET, Wilsch [2211.09144]

Filter: Redundant SMEFT All

 $\begin{array}{c} R_{eval}^{pred} \; R_{eu}^{pred} \; R_{eu}^{pred} \; R_{qu}^{pred} \; R_{q$

Operator definition:

 $R^{prst}_{\ell q d e} = (\bar{\ell}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu e_t)$

Reduces to:

Reduction Identity:

$$\begin{split} R^{prede}_{pede} &= -2Q^{etrad}_{etrad} + \frac{1}{16\pi^2} \left(\frac{1}{6} \overline{y}^{get}} y^{uet}_{ud} Q^{uet}_{edd} - \frac{1}{4} g_{SY} y^{uet}_{d} Q^{uet}_{edB} \right. \\ &+ \frac{3}{4} g_{Y} y^{tet}_{d} \overline{Q}^{tet}_{edd} + Q^{etrad}_{eff} \left(\overline{9} y^{uet}_{d} y^{uet}_{d} y^{uet}_{d} - 3\lambda y^{uet}_{d} \right) \\ &+ Q^{uet}_{could} \left(\frac{3}{4} y^{uet}_{u} y^{uet}_{u} + 3y^{tet}_{d} y^{uet}_{u} \right) + \overline{y^{tet}} y^{uet}_{d} Q^{(8)}_{d} y^{uet}_{u} Q^{(3)}_{edu} \\ &+ \frac{3}{2} y^{uet}_{u} y^{uet}_{d} Q^{uett}_{u} + 2\overline{y^{tet}_{u}} \overline{y^{uet}_{d}} Q^{uett}_{d} - \frac{1}{16} y^{uet}_{u} y^{uet}_{u} Q^{(3)}_{edu} \\ &- \frac{1}{4} g_{tb} \overline{y^{tet}_{d}} Q^{uett}_{dd} + 2\overline{y^{tet}_{u}} \overline{y^{uet}_{d}} Q^{uett}_{d} - \frac{1}{16} \overline{y^{uet}_{u}} y^{uet}_{u} Q^{(3)petv}_{edu} \\ &- \frac{1}{4} g_{tb} \overline{y^{tet}_{d}} Q^{uett}_{dd} - \frac{1}{4} \overline{y^{uet}_{u}} y^{uet}_{d} Q^{uett}_{d} - \frac{1}{16} \overline{y^{uet}_{u}} y^{uet}_{u} Q^{(3)petv}_{edu} \\ &- \frac{1}{2} \overline{y^{uet}_{u}} y^{uet}_{d} Q^{uett}_{du} - \frac{1}{2} \overline{y^{uet}_{u}} y^{uet}_{d} Q^{uett}_{du} - \frac{1}{4} g^{uet}_{u} y^{uet}_{edu} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{du} - \frac{1}{2} \overline{y^{uet}_{u}} y^{uet}_{d} Q^{uett}_{du} - \frac{1}{4} \overline{y^{uet}_{u}} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{du} - \frac{1}{2} \overline{y^{uet}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} - \frac{1}{2} \overline{y^{uet}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} - \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} - \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} - \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} - \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} - \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{edu} \\ &- \overline{y^{det}_{u}} y^{uet}_{u} Q^{uett}_{u} \\ &- \overline{y^{uet}_{u}} y^{uet}_{u}$$

> TeX

- (Automatic) EFT matching is crucial to BSM phenomenology
- Functional matching provides a direct approach to automated matching
- One must carefully account for evanescent operators in computations
- Matchete is a public code for EFT matching. It already greatly simplifies the matching task and many more features are planned!

https://gitlab.com/matchete/matchete

Backup

RG in evanescent schemes

$$\mathcal{E}\left(\begin{array}{c} O \\ \bullet \end{array} \right) \sim \frac{1}{\epsilon} \begin{array}{c} E \\ \bullet \end{array} \implies \delta\eta(g) \neq 0$$

Matchete demonstration (SM implementation)

Gauge Groups

```
DefineGaugeGroup[U3c, SU@3, gs, G,
FundAlphabet→CharacterRange["a", "f"],
AdjAlphabet→CharacterRange["a", "F"]]
DefineGaugeGroup[SU2L, SU@2, gt, W,
FundAlphabet→CharacterRange["i", "n"],
AdjAlphabet→CharacterRange["i", "N"]]
DefineGaugeGroup[U1Y, U@1, gY, B]
```

Generation index

```
DefineFlavorIndex[Flavor, 3,
IndexAlphabet → ("p", "r", "s", "t", "u", "v")]
```

Fermions

```
DefineField[q, Fermion,

Indices → (SU3ce fund, SU2Le fund, Flavor),

Charges → (UlY[1/6]),

Chiral → LeftHanded,

Mass → 0]

DefineField[u, Fermion,

Indices → (SU3ce fund, Flavor),

Charges → (UlY[2/3]),

Chiral – RightHanded,

Mass → 0]

DefineField[d, Fermion,

Indices → (SU3ce fund, Flavor),

Charges → (UlY[-1/3]),

Chiral – RightHanded,

Mass → 0]
```

```
DefineField[l, Fermion,
Indices → (UJY[-1/2]),
Charges → (UJY[-1/2]),
Chiral → LeftHanded,
Mass → 0]
DefineField[e, Fermion,
Indices → (FLavor),
Charges → (UIY[-1]),
Chiral → RightHanded,
Mass → 0]
```

Higgs

```
DefineField[H, Scalar,
   Indices → {SU2L@fund},
   Charges → {U1Y[1/2]},
   Mass → 0]
```

Couplings

```
DefineCoupling[A, SelfConjugate → True]

DefineCoupling[µ, SelfConjugate → True,

EFTorder - 1];

DefineCoupling[Ye,

Indices → (Flavor, Flavor)]

DefineCoupling[Yu,

Indices → (Flavor, Flavor)]

DefineCoupling[Yd,

Indices → (Flavor, Flavor)]
```

Lagrangian

```
LSM = FreeLag[] +

-µ[]<sup>2</sup> BareH[i] ×H[i] -

λ[i] BareH[i] ×H[i] × BareH[j] ×H[j] +

PlusHc[

-Yu[p, r] ×CG[epseSU2L, {i, j}] ×

BareHei×Bareq[a, j, p] ++ u[a, r]

-Yd[p, r] ×Hei×Bareq[a, i, p] ++ d[a, r]

-Yd[p, r] ×Hei×Bareq[i, p] ++ e[r]

] // RelabelIndices;
```

LSM // NiceForm

```
 \begin{split} & -\frac{1}{4}\,B^{\mu\nu\,2}\,-\,\frac{1}{4}\,G^{\mu\nu\,A2}\,-\,\frac{1}{4}\,W^{\mu\nu\,I2}\,+\,D_{\mu}\,H_{1}\,D_{\mu}\,H_{1}^{1}\,-\\ & \mu^{2}\,H_{1}\,H_{1}^{1}\,+\,i\,\left(\overline{d}_{\mu}^{0}\,\cdot\,\gamma_{\mu}\,P_{R}\,\cdot\,D_{\mu}\,d^{p}\right)\,+\,i\,\left(\overline{d}_{\mu}^{0}\,\cdot\,\gamma_{\mu}\,P_{R}\,\cdot\,D_{\mu}\,e^{p}\right)\,+\\ & i\,\left(\overline{t}_{1}^{0}\,\cdot\,\gamma_{\mu}\,P_{R}\,\cdot\,D_{\mu}\,u^{ap}\right)\,-\,\frac{1}{2}\,\lambda\,H_{1}\,H_{2}\,H_{1}^{1}\,-\\ & \overline{t}\,G_{\mu}^{0\,P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{L}\,\cdot\,q^{aip}\right)\,-\,\frac{1}{2}\,\lambda\,H_{1}\,H_{2}\,H_{1}^{1}\,-\\ & \overline{\tau}\,G_{\mu}^{0\,P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,q^{aip}\right)\,-\,\tau\,G_{\mu}^{0\,P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,q^{aip}\,\right)\,-\\ & \overline{\tau}\,G_{\mu}^{0\,P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,q^{aip}\,\right)\,-\,\tau\,G_{\mu}^{0\,P}\,H_{1}^{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,q^{aip}\,\right)\,-\\ & \gamma\,u^{0\,P}\,H_{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{R}\,\cdot\,u^{ar}\,\right)\,\varepsilon^{+}_{1}\,\tau\,\sigma\,\sigma^{0\,P}\,H_{1}^{1}\,\left(\overline{d}_{\mu}^{0}\,\cdot\,P_{L}\,\cdot\,q^{ajp}\,\right)\,\varepsilon^{+}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau^{-}_{1}\,\tau
```