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« Cosmological perturbations are fundamental to establish any predictive model of the Universe
* They provide the seeds for cosmic background radiation anisotropies and for large scale structure formation
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The CMB leaves room from deviations from a power law spectrum,
Planck 2015 results. XX. Constraints on inflation
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What can cause these features?

Similar features, but on other scales, in the spectrum of primordial curvature perturbations could also cause PBH
production which have been claimed to be within the LIGO observable range, and could also affect LSS.

These features can be due to several different causes such as:
* Multi-fields
* Slow-roll violation in single field

* Modification of gravity
* A combination of the above

Despite their apparent difference do all these phenomena share something?

Yes ..
SESS and MESS



We define the gauge invariant space dependent effective sound speed
(SESS) of comoving curvature perturbations according to ( A. Romano &
S. A. Vallejo P. PLB, 78, 367, 2018)

SP.(t,x")
opc(t, x')
SESS reduces to the standard sound speed for single field K(X) theories.

In absence of anisotropy we can obtain a new equation, with no source
term, which is a modified version of the Sasaki-Mukhanov equation
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while in the standard approach there is a source term

. Gt(ZQ) cz a3 5, a’e
B — [ = =
R+ IR azAR—I—2228t = 0, =75

The equation with SESS is model independent. SESS can be treated as
an effective quantity in data analysis, without assuming any model.



In presence of anisotropy the equation using SESS takes the form
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The equations we have obtained are completely general.

They can be applied to modified gravity theories, multi-fields systems, or
any combination of these models!




The momentum dependent effective sound speed (MESS) is defined as

where 6 P. and 85, are the Fourier transforms of the comoving pressure
and energy density respectively.

In absence of anisotropy, using MESS and manipulating the Einstein’'s
equations in Fourier space we get
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while in the standard approach there is a source term
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Important note:

The MESS V. is not simply the Fourier transform of the SESS v.!



In presence of anisotropy, using MESS and manipulating the Einstein’s
equations in Fourier space we get

683

= ) VE 2 Vi 2 k 2 =2

R« —|— K+ k<R, — k=T k M, )| =0, m = =
Zk a Vi

The equation with MESS is model independent.

MESS can be treated as an effective quantity in data analysis, without
assuming any model.

Using the standard approach we get
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The equations we have obtained are completely general.

They can be applied to modified gravity theories, multi-fields systems, or
any combination of these models!



Some notation for scalar perturbations : No gauge fixing

ds? = —(1 + 2A)dt? + 2a0; Bdx'dt+
+a? {5;;(1 + 2C) + 20;0; E} dx'dx” |

TOTAL energy momentumtensor 79 = —(p+ 5p) , 1% = (p+ P)O;(v+ B)
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Standard definitions of entropy in the comoving gauge and uniform density gauge
SP, = Cu(t)26p + s P4 cfv:P '/p ' Adiabatic sound speed
SP. = cs(t)?8p. + s P Comoving curvature pertubation sound speed

a(t,xz?) = cs(t)28(t, ) + (¢, z?)

But ....the one in the comoving gauge it is not unique !
¢ = &) = co(t): + Acy(t)?,
[ = T(t,z") =T(t,2") - Acs(t)*B(t, ")

Comparing it to the SESS we can get the relation between them

vl (t,at) = a(t, 2") a(t,a') = cs(t)*B(t,2") + T(t,2")

B(t, x)



Relation of SESS with entropy and anisotropy
In presence of anisotropies the definitions of SESS is the same and the relation
with entropy is
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The most general equation has terms related to , but no explicit entropy



Most general equation for any system including anisotropy and entropy effects
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The first and second order equations are obtained using the following important relations, obtained from
Manipulating the Einstein's equations in the comoving gauge. The Poisson eq. Is more used in the
modified gravity theories literature,
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The difference between the uniform density field and the comoving gauge

The uniform density field (aka “unitary”) is in general different from the comoving gauge
They coincide for K(X) — inflation, but not for Horndesky theory or multi-fields systems

v+B = v+B-it - 0t,= v+ B

We can now define explicitly gauge invariant quantities: Einstein's equations in the comoving gauge
comoving pressure perturbation a
comoving density perturbation

comoving curvature perturbation 1 ® B
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How general is this equation?

« SESS reduces to the standard definition of sound speed for single field K(X)

theories
e ltisa quantity which effectively reproduces the effects of the

source terms in the EOM which in the standard formulation are associated to

entropy perturbations

» Given the generality of the assumptions this formulation is valid for any system for
which an energy momentum tensor can be defined, including multi-fields systems or
modified gravity theories (MGT)

e It is also valid for MGT, after writing the MGT field equations as Einstein's equations
with an appropriate definition of an effective energy momentum tensor



How useful SESS and MESS are?

These equations are completely general and can be applied to any physical system for example:
Multi-fields, scalar or vector fields (scalar part)

Modified gravity, e.g. Horndesky theory, in terms of an effective EM tensor : Gw=Tfff
Non-Gaussianity can be studied in terms of MESS and SESS

The anisotropy stress term is easy to add and does not modify the definition of MESS and SESS
Mess is not simply the Fourier transform of SESS !



Example: 2 minimally coupled scalar fields
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We can substitute the gauge invariant comoving fields in the comoving pressure and density perturbations

([P0
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Note that this quantity is gauge
iInvariant, as expected

Assuming a classical trajectory
of the form

The SESS is different from cs only when >

there is a turn in field space
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: H o 1
After substituting SESS we get the “standard ” ¢ = 2 [y A®p §H9 ’

source term
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Applications: features in primordial curvature spectrum motivated by CMB or PBH

Considering the phenomenological ansatz of time independent MESS we get:
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Due to the MESS modes freeze after horizon crossing time, around 71, =—

This super-horizon evolution is the cause of the features in the spectrum

For example for a multi-fields model with standard kinetic term this
evolution is attributed to entropy perturbations while in the MESS picture it is just
due the difference between the freezing time and the horizon crossing time
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FIG. 1: The relative difference AP, /P is plotted as a
function of k£/ko. The solid, dashed and dot-dashed lines
correspond o = 2.5 x 10 'ko and A. = 4 x 10 ', A. =
3 107! and A, = 1.7 x 10~ ! respectively.

The scale kO could have different origins: turning point in multi-fields modes,
particle production, modification of gravity, etc.



CMB anisotropy spectrum : there exists some anomalies which could be explained by MESS
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One spectrum to rule them all?

/ 4
2 272 <
Ri! (k) + 2 Re (k) + k" Re(k) = 0, hy, +2—Lhj, + 2 k*hy, =0,
sl
_av2e 1 o 2 a’a Freedom to choose the initial condition
<= c., T C—S\ a” = a2 |- condition for a(t) for a given z(t) !!

Recipe to construct dual models:

Fix z0(t), c(t)

Solve z(t)=z_ _(t) with different initial H, i.e. different initial derivative &'

The new a(t) will by construction give the same z(t) but different slow roll parameters
The spectra will be the same

Higher order correlation functions for scalar perturbations will be different
Gravitational waves spectra will be different



Examples of homospectral models
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Hubble parameter for homospectral models without feature
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Curvature spectra of homospectral models
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No feature

Bispectrum equilateral configuration
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Bispectrum Squeezed configuration
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The spectrum of tensor modes is different for scalar homospectral models
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Violation of “general consistency condition”(JCAP 1504 (2015), Palma),
not the squeezed limit Maldacena's
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One spectrum to rule them all?
Any (not just scale invariant) spectrum of comoving curvature perturbation can be obtained

« with an infinite class of homospectral dual background histories, including contracting Universes

different theoretical scenarios with the same MESS such as multi-fields, modified gravity, or their combination
further degeneracy due to combination of MESS and background evolution degeneracy

Higher order correlation functions and gravitational waves can reduce the degeneracy

MESS is a useful model independent quantity to span the full space of theoretical scenarios



MESS of multifields system

g p J
@ﬁ(t):(HH—Q) :(1 +2H?{s@,s) :(l_zﬂ?@@ﬁ)
X (7" G

@@f (‘f”jz)v - Q. 6=det[Gy), 0= Q e, V= Ve,
1 2

G GHG &)2 Glléﬁ(}lzéz _ Vs
K_(1 2 [Guditlng | =
-t i -

§1vs)



Example
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Effects of the MESS on the spectrum
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FIG. 1: Evolutions of the amplitude of curvature perturbation ¢ given in eq. (8) for different sound speeds 7; x a? with
different values of p is shown as thick lines. Color coding corresponds to late-time behavior: freezing (red), decaying
(blue) and growing (black); the special case of p = 4 is shown in green. Thin green lines indicate the real and imaginary
part of of ¢ for p = 4. Normalization of ( is arbitrary.



Conclusions

Model independent analysis based on MESS or SESS can set constraints on a wide class of
models/theories, comparing different categories of theoretical scenarios, not only models,
within a unified phenomenological framework.

MESS and SESS are model independent and can be applied to any physical system for example:
Multi-fields, scalar or vector fields (scalar part)
Modified gravity, e.g. Horndesky theory, in terms of an effective EM tensor: G = f\ff

Non-Gaussianity can be studied in terms of MESS and SESS
The anisotropy stress term can be added but does not modify the definition of MESS and SESS
Another convenient quantity to parametrizes the effectin a model independent way is the

effectiveZ ZEFF;



Einstein’s equations in the comoving gauge and derivations of EOM in terms of MESS
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