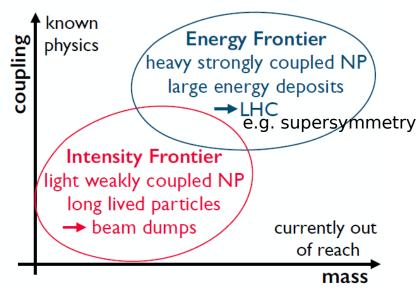
Looking forward to new physics and neutrinos at the LHC

Sebastian Trojanowski (AstroCeNT, CAMK PAN & NCBJ)

High Energy, Cosmology and Astro-particle Physics (HECA) May 25, 2021

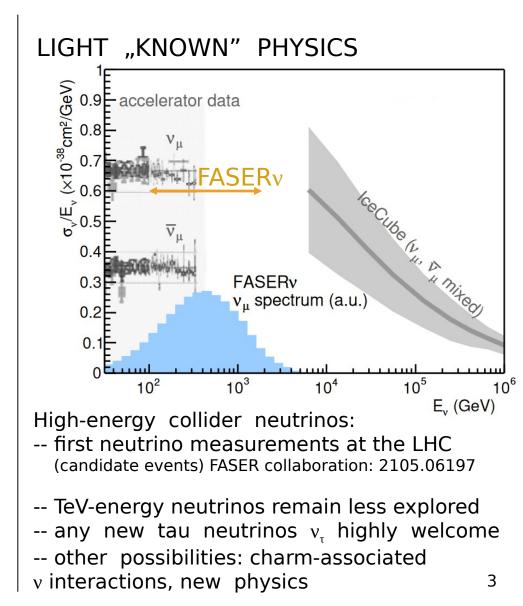


OUTLINE

- Motivation & Fundamentals
- Far-forward BSM physics at the LHC
 - new physics production in the far-forward region of the LHC
 - selected BSM models
 - BSM particle production away from the ATLAS IP,
 - light dark matter (DM)
- High-Energy neutrino physics at the LHC
- Additional opportunites (QCD, connections to cosmic ray physics,...)
- Concluding remarks

MOTIVATION

LIGHT NEW PHYSICS



-- "leave no stone unturned"

-- cosmology (dark matter, inflation, bariogenesis,...)

-- neutrino masses (GeV-scale heavy neutral leptons)

-- anomalies

(SELECTED) BSM CONNECTIONS

a) gauging global symmetries of the SM e.g. $U(1)_{Le-L\mu}$, $U(1)_{B-L}$, i = i new dark vector

M. Bauer, P. Foldenauer, J. Jaeckel, **JHEP 1807 (2018) 094**

Additional U(1) groups might arise in extensions of the SM group,

typically light new gauge boson must be very weakly coupled to the SM

Mohapatra R N and Senjanovic G, Phys. Rev. D23:165 (1981

Kinetic mixing between the photon and new vector can also be loop-induced in secluded regime $U(1)_{v}$

b) mirror sector / Twin Higgs scenarios often predict new scalars coupled to the SM via Higgs

 $(H^{\dagger}H) \times m_{H}^{2} \longrightarrow (H^{\dagger}H) \times (m_{H}^{2} + c_{1}S + c_{2}S^{2} + \ldots),$

Lanfranchi etal, 2011.02157

c) Right-handed neutrinos e.g. vMSM (v masses and oscillations, DM, baryon asymmetry) T. Asaka, S. Blanchet and M. Shaposhnikov, *Phys. Lett.* **B631** (2005) 151-156 T. Asaka and M. Shaposhnikov, *Phys. Lett.* **B620** (2005) 17-26

d) Axion is an example of light weakly coupled particle postulated long time ago
 later generalized to axion-like particles

IDDEN SECTOR PORTALS

- new ",hidden" particles are SM singlets (but gauged $U(1)_{B-L}$ etc. are also considered) - interactions between the SM and "hidden" sector arise due to mixing through some SM portal

$$\mathcal{L}_{\text{portal}} = \sum O_{\text{SM}} \times O_{\text{DS}}$$

B. Patt, F. Wilczek, 0605188 B. Batell, M. Pospelov, A. Ritz, 0906.5614

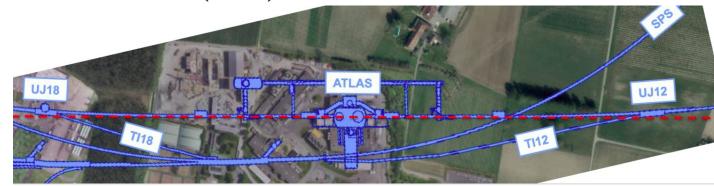
Renormalizable Coupling Portal Dark Photon, A_{μ} $-\frac{\epsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$ $(\mu S + \lambda S^2) H^{\dagger} H$ Dark Higgs, S $\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \ \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \ \frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$ Axion, a Sterile Neutrino, N $y_N LHN$ PBC report, 1901.09966

FAR-FORWARD BSM PROGRAM

IDEA

Forward BSM & neutrino physics at the

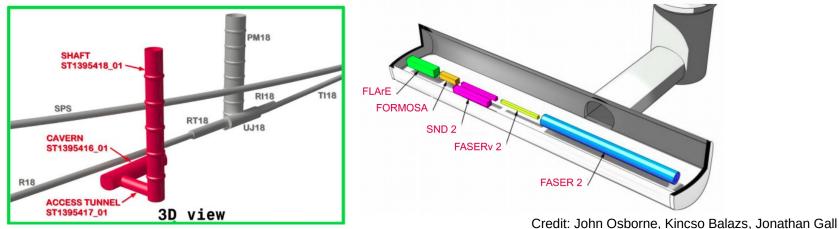
J.L. Feng, I. Galon, F. Kling, ST, 1708.09389 FASER Collaboration: 1811:10243, 1812.09139 1908.02310, 2001.03073

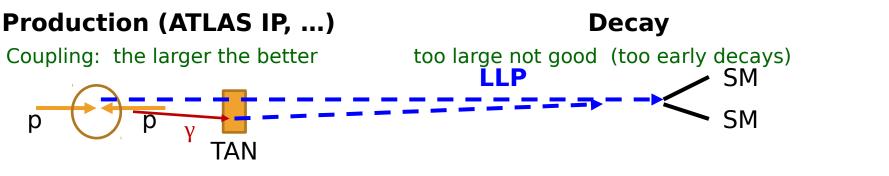

ForwArd Search ExpeRiment (FASER) – small (~0.05 m³) and detector to be placed few hundred meters downstream the ATLAS IP to harness large, currently "wasted" forward LHC cross section $\sigma_{inel} \sim 75 \text{ mb, e.g., } N_{\pi} \sim 10^{17} \text{ at } 3/ab^{-1} (for comparison } \sigma \sim fb - pb, e.g., N_{H} \sim 10^{7} at 300 \text{ fb}^{-1} in high-p_{T} searches)$ new FASER physics & neutrinos VERY SCHEMATICALLY (side tunne p collision axis ATLAS IP FASER 7

Forward BSM & neutrino physics at the LHC

FASER LoI & TP: 1811:10243, 1812.09139 FASERv LoI & TP: 1908.02310, 2001.03073

RUN 3 & HL-LHC PLANS


Run 3 main FASER -- cylindrical detector: $L = 1.5 \text{ m}, R = 10 \text{ cm}, V = 0.05 \text{ m}^3, 150 \text{ fb}^{-1}$ (Run 3)

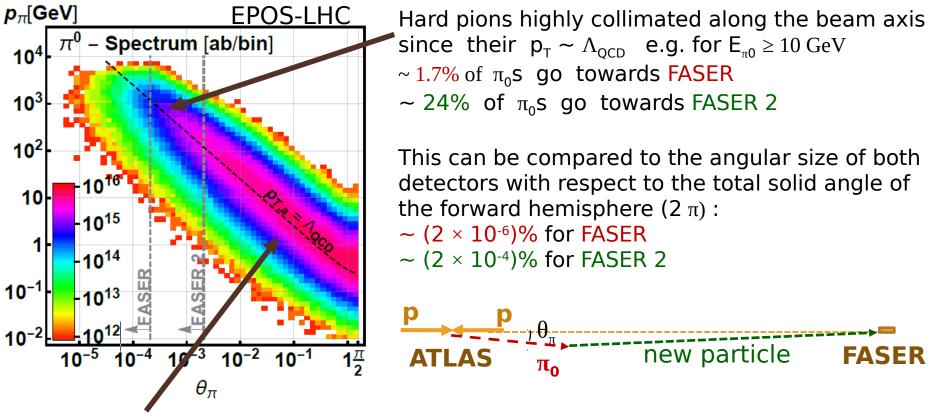

HL-LHC

(possible upgrade) FASER 2: *L* = 5 m, *R* = 1 m, V = 16 m³, 3 ab⁻¹ (HL-LHC)

Forward Physics Facility R.M.Abraham etal, Snowmass 2021 LoI

SEARCH FOR HIGHLY DISPLACED DECAYS

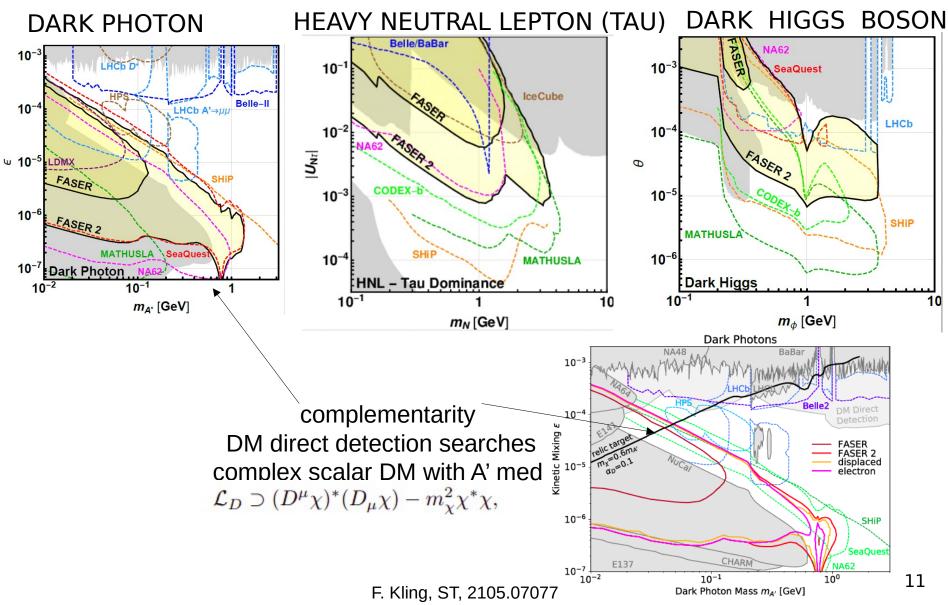
Various production mechanisms: -- meson decays (light & heavy)


$$N_{\rm sig} \propto \begin{cases} \mathcal{L}^{\rm int} \, \epsilon^2 \, e^{-L_{\rm min}/\bar{d}} & \text{for } \bar{d} \ll L_{\rm min} \\ \mathcal{L}^{\rm int} \, \epsilon^2 \, \frac{L_{\rm max} - L_{\rm min}}{\bar{d}} & \text{for } \bar{d} \gg L_{\rm min} \, . \end{cases}$$

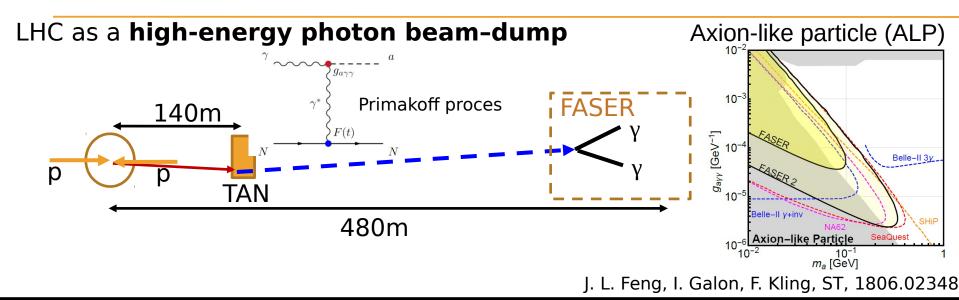
- -- bremsstrahlung
- -- hard-scatterings,...

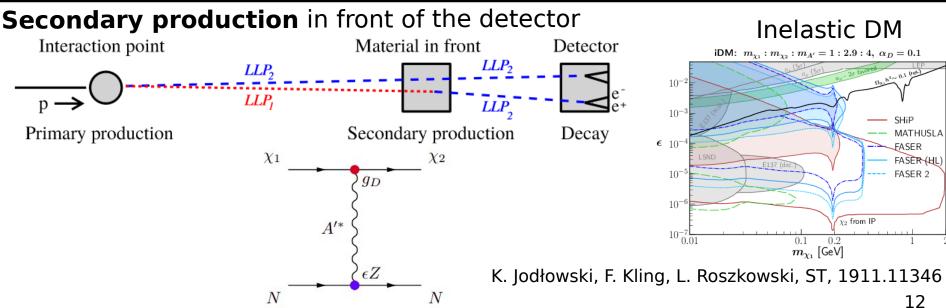
NEW PHYSICS FROM PION DECAYS AT THE ATLAS IP

J.L. Feng, I. Galon, F. Kling, ST, 1708.09389

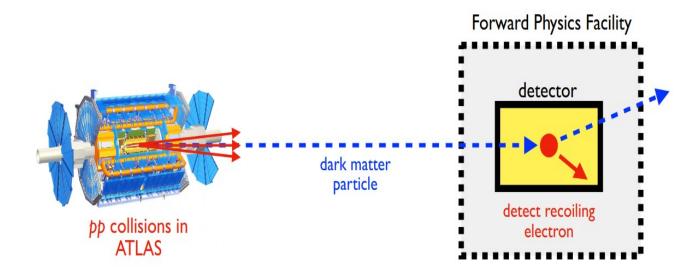


Soft pions going towards high- p_T detectors:


- produced LLPs would be too soft for triggers
- large SM backgrounds


FASER Collaboration, 1811.12522

SELECTED SENSITIVITY REACH PLOTS


NOT ONLY ATLAS IP

Sebastian Trojanowski (AstroCeNT, CAMK PAN) B. Batell, J. L. Feng, ST, 2101.10338 B. Batell, J.L. Feng, A. Ismail, F. Kling, R.M.Abraham, ST, in preparation DMDIRECT DETECTION AT THE LHC

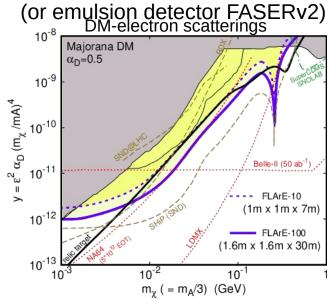
• Light DM particles can be efficiently produced in the far-forward region of the LHC & scatter in a distance detector

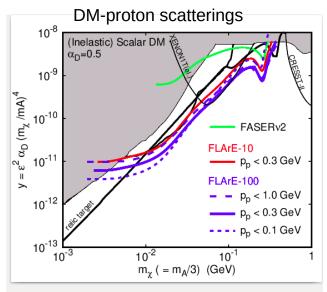
This search is highly complementary to the traditional DM direct detection searches:

 probe of relativistic interaction rates of LDM (DM energy ~ a few hundred GeV) [collider-boosted DM]

– the search is not sensitive to the precise abundance of χ DM component (possible variations in cosmological scenario) [collider-produced DM]

EXAMPLE DM REACH PLOTS


• Useful for probing DM models with suppressed non-relativistic scattering rates


• Sample results for two benchmark models: dark photon mediator & Majorana or (inelastic) complex scalar DM

 $\mathcal{L} \supset A'_{\mu} \left(\epsilon \, e \, J^{\mu}_{EM} + g_D \, J^{\mu}_D \right) \quad \mathcal{L} \supset \begin{cases} |\partial_{\mu}\chi|^2 - m_{\chi}^2 |\chi|^2 & (\text{complex scalar DM}) \\ \frac{1}{2} \overline{\chi} i \gamma^{\mu} \partial_{\mu} \chi - \frac{1}{2} m_{\chi} \overline{\chi} \chi & (\text{Majorana fermion DM}) \end{cases} \qquad J^{\mu}_D = \begin{cases} i \chi^* \overleftrightarrow{\partial_{\mu}} \chi & (\text{complex scalar DM}) \\ \frac{1}{2} \overline{\chi} \gamma^{\mu} \gamma^5 \chi & (\text{Majorana fermion DM}) \end{cases}$

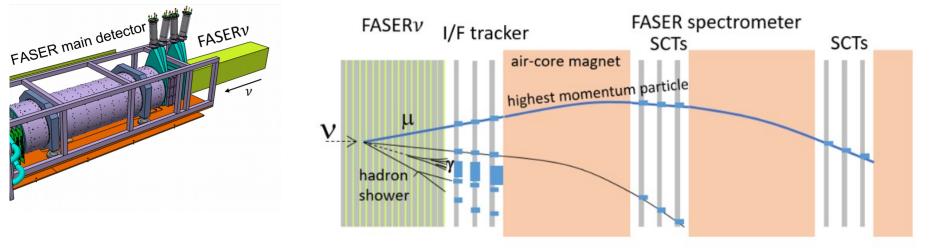
They avoid stringent bounds from CMB

SUMMARY OF FAR-FORWARD BSM PROGRAM

(VERY) SCHEMATIC FAR-FORWARD DETECTOR CAPABILITIES Search for LLP decays Scattering detectors: FASERv(2), SND@LHC, FLArE Secondary production FASER(2): 1708.09389, 1811.12522... Current bounds (1911.11346, 2011.04751) 1908.02310. 2001.03073. 2002.08722. 2101.10338 SND@LHC: 2104.09688 DM, v physics, very long-lived new particles Anomalies, DM mediators lifetime (sub-GeV particles) fs μs ps ns

Search for highly-displaced decays of light new particles

(boosted decay lengths d~100-1000 m)

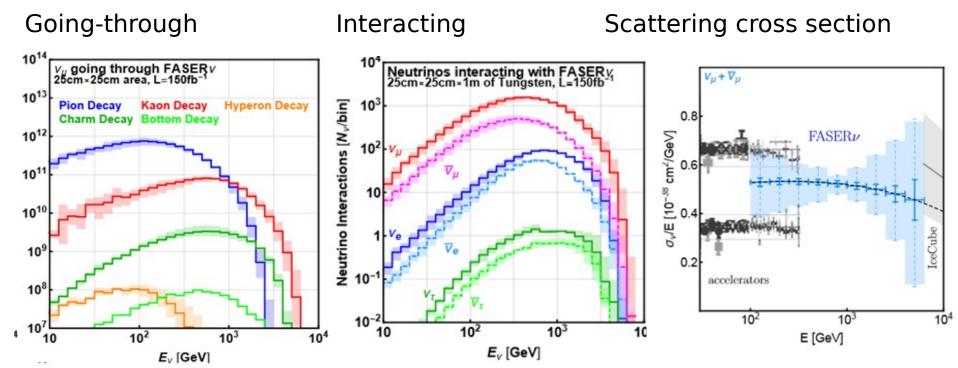

- Secondary production in front of the detector allows for probing even d~meters (or less inside the scattering detectors)
- Scattering detectors:

especially important if decays not possible (stable species like v and DM) can also open new detection channels for very long-lived particles

• Typically best reach for masses<GeV, but even ~10 GeV particles can be probed

FAR-FORWARD NEUTRINO PROGRAM

FASERv -- NEUTRINO SUBDETECTOR (RUN 3)

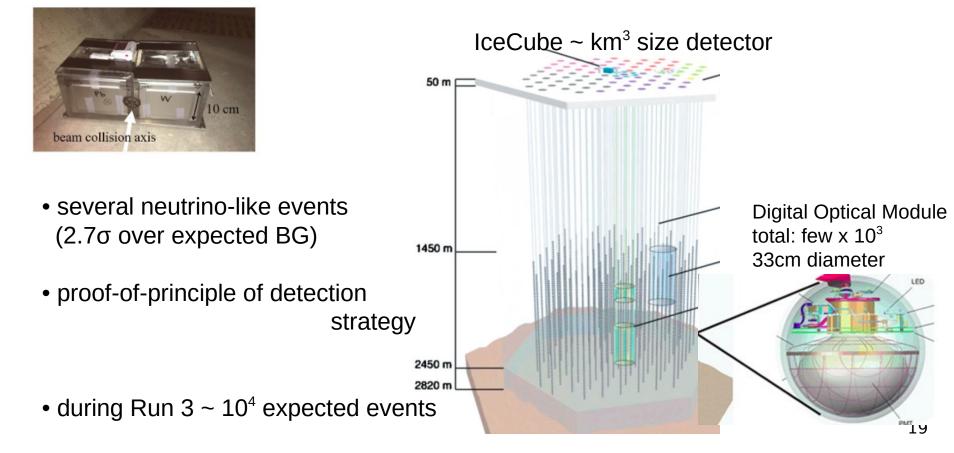

- FASERv (1908.02310, 2001.03073) and <u>SND@LHC</u> (2002.08722) emulsion detectors
- Excellent spatial resolution (even 50nm),
- Can deal with high track density (up to 10⁶ tracks/cm²),
- Study neutrino interaction vertices at TeV energies in great details
- Interface tracker charge measurement disentangling ν_{μ} and ν_{μ}

FASER Collaboration, 1908.02310

FAR-FORWARD NEUTRINOS

- LHC: lots of forward-going neutrinos from meson decays
- Measurement of the neutrino scattering cross section for $E_v \sim \text{TeV}$ (currently poorly explored regime)
- Possible detection of 10-20 high-energy tau neutrino events

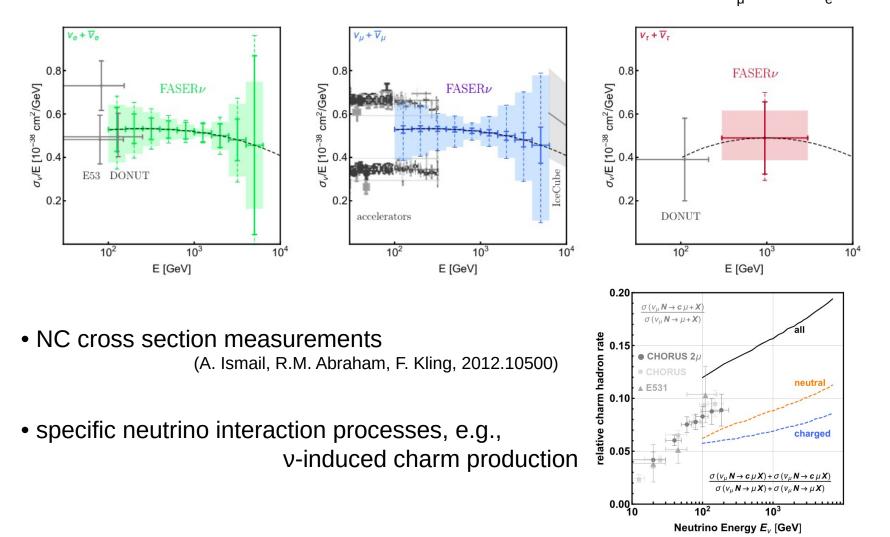
LHC Run 3



EXTREMELY POWERFUL DETECTION METHOD

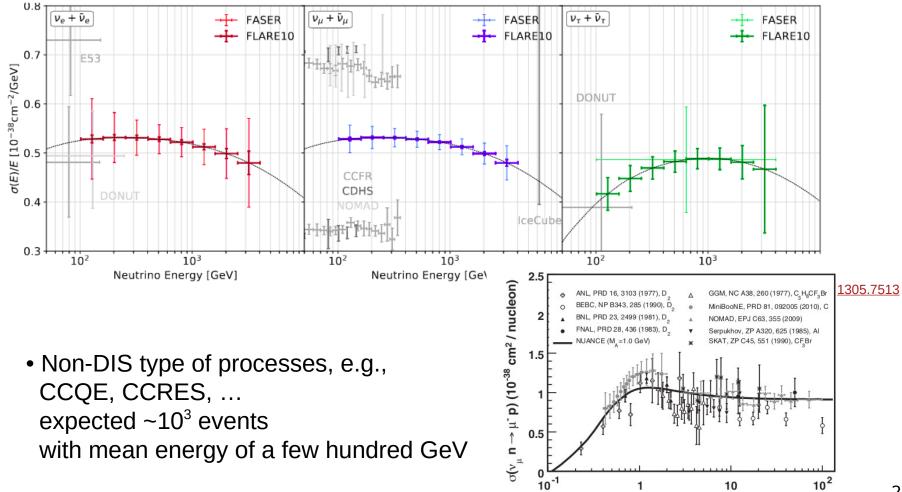
• First neutrino candidate events has been observed already during Run 2...

FASER Collaboration, 2105.06197


 ...with two handy boxes (10cm x 10cm x 12.5cm) left in the far-forward place (480m) for 4 weeks (12.5 fb⁻¹)

FASER Collaboration, 1908.02310

PROSPECTS FOR RUN 3


• Inclusive CC cross section measurements at TeV energies (~10⁴ ν_{μ} , ~10³ ν_{e} , ~10 ν_{r})

E, (GeV)

PROSPECTS FOR HL-LHC

- 10-tonne detector on beam collision axis
- Even better cross section measurements (few x 10 $^{\scriptscriptstyle 5}\,\nu$. few x 10 $^{\scriptscriptstyle 4}\,\nu$. ~10 $^{\scriptscriptstyle 3}\,\nu$)

NEW PHYSICS & NEUTRINO INTERACTIONS

 Neutrino oscillations into sterile neutrinos direct probes at larger mass differences than typical neutrino experiments

 $\Delta m^2 \sim 1000 \text{ eV}^2$

(also e.g. Gallium anomaly)

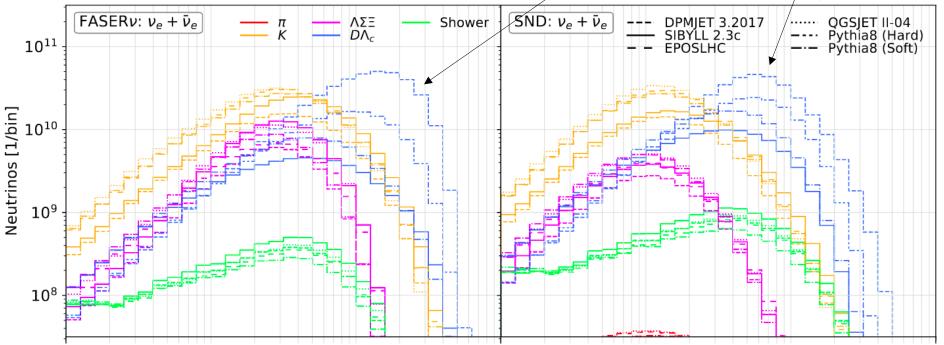

Non-standard neutrino interactions

Example: dipole portal to heavy neutral leptons Magill etal, 1803.03262 $\iota_N \, [1/\text{GeV}]$

 $\mathcal{L} \supset \mu_N \, \bar{\nu}_L \sigma_{\mu\nu} N_R F^{\mu\nu} + \text{h.c.},$

Transition magnetic moments of neutrinos **Before EWSB**

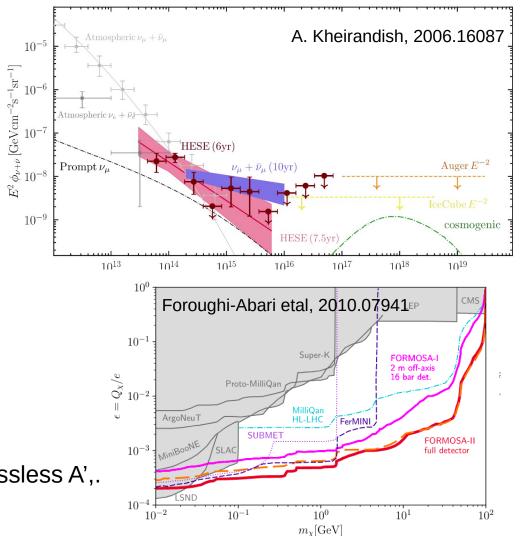
$$\mathcal{L} \supset \bar{L} \left(d_{\mathcal{W}} \mathcal{W}^a_{\mu\nu} \tau^a + d_B B_{\mu\nu} \right) \tilde{H} \sigma_{\mu\nu} N_D + h.c.$$



FURTHER OPPORTUNITIES

QCD – FORWARD CHARM

- Measuring neutrino flux and spectrum: further tuning of forward MC tools
- Large differences in electron neutrino spectrum at high energies from charm decays
- v_{a} main production at high energies: $gg \rightarrow cc$, $D \rightarrow K | v$
- probe of gluon PDFs at low x, intrinsic charm,...


F. Kling, 2105.08270

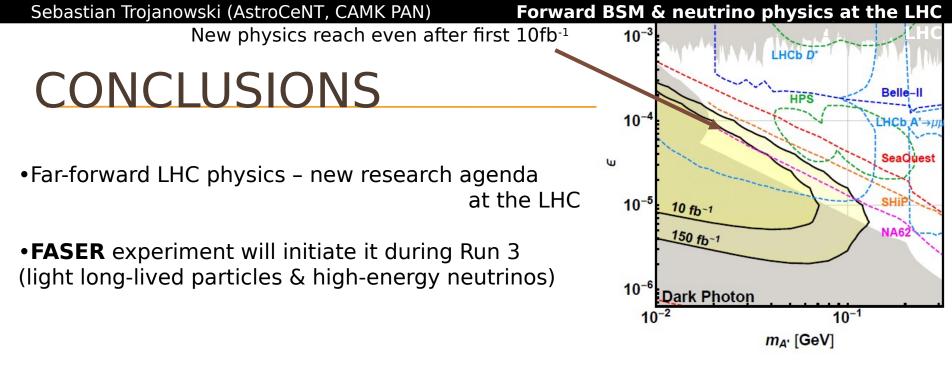
COSMIC RAYS AND MORE

• Forward charm production (relevant for measurements of the astrophysical neutrino flux at IceCube)

- Cosmic-ray muon problem (observed excess of high-energy muons, better high-energy forward kaon production measurement remains essential here)
- Opportunities in muon physics (SM measurements, new physics)
- millicharged particles
- tests of charge quantization
- motivations from GUTs, strings, massless A',.

constrain ``prompt'' atmospheric neutrino flux

FASER IN POPULAR CULTURE



related article

- It could be continued towards HL-LHC: Forward Physics Facility
- further prospects: light DM, QCD and other SM measurements...
- For pheno BSM studies: useful tool **FORESEE** (F. Kling, ST, 2105.07077)
- •2nd Forward Facility Meeting starts just in two days! (>100 participants) https://indico.cern.ch/event/1022352/overview

2nd Forward Physics Facility Meeting

27-28 May 2021