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Dark ma�er & XENON1T



Dark ma�er experimental evidence

We all know the evidence for dark ma�er (DM) in gravitational
interactions, e.g.

(I) Rotation curves (Rubin, Ford, and Thonnard 1980) (II) CMB (Ade et al. 2016)
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Make it, shake it, break it

Three detection strategies
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DM sca�ers with SM nucleons

We can search for DM in direct detection experiments. DM elastic
sca�ers with nucleons in a detector on Earth.
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There is a wind of WIMP particles from the Earth’s motion in the
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Direct detection

The Panda (Cui et al. 2017), LUX (Akerib et al. 2016),
XENON (Aprile et al. 2017) and PICO (Amole et al. 2017)
experiments saw nothing, resulting in exclusion contours on the
(mass, cross section) planes
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Electron recoils

If you get bored of looking for WIMPs in nuclear recoils in your
direct detection experiment, look for electronic ones!

Distinctive signature in XENON1T — di�erent ionisation and
scintillation characteristics mean that they can be distinguished
from e.g., WIMP nuclear recoils
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Axion-like particles

The QCD axion, a, is a neutral pseudo-scalar that could solve the
strong CP problem through the PQ mechanism by the coupling

L ∝
(
a
fa
−Θ

)
F F̃

and a potential that generates the vacuum expectation value
〈a〉 = faΘ. More generally,

• Light neutral pseudo-scalars that couple to photons are called
axion-like particles (ALPs)

• Usually too light to produce any observable nuclear recoil

• Might produce an electronic recoil
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XENON1T

So XENON1T looked for electronic recoils (Aprile et al. 2020)
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XENON1T

What’s that?
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XENON1T

Noise?
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XENON1T

Nobel prize?
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XENON1T

Worth writing a paper about?
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XENON1T

And what’s that?
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Noise or Nobel?

We’ve been here before
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(II) 750 GeV bonanza! (Aad et al. 2015)

Recently, once it was Nobel (Higgs), many other times it was noise
(750 GeV).
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A global fit

In this case, XENON1T report 3.5σ evidence for solar ALPs. But is
that compatible with what we already know about solar ALPs from
other experiments?

We need a global fit — an analyis that looks at the model’s whole
parameter space and considers all relevant experimental constraints
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Models



ALP models

We consider four models to explain the observations:

1. The background only model

2. The background only model + a tritium background

3. The background + solar ALPs

4. The background + DM ALPs
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Background only

Unlike traditional WIMP searches involving nuclear recoils,
significant backgrounds for electronic recoils from all kinds of
radioactive isotopes in the detector

We take best-fit background from XENON1T paper.
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Tritium

3H background in the XENON1T experiment could give rise to an
excess of events at about 1 keV – 15 keV. Fi�ing the anomaly with
a tritium component requires about 5× 10−25 mol/mol

In light of the uncertainties about the tritium level, we consider
tritium fraction αt

log10

( αt

1 mol/mol

)
= −27± 3

with a central value at the upper estimate of the level of tritium
and a moderate standard deviation
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Solar ALPs

Phenomenological solar ALP model with three independent
couplings to

• photons (gaγ)

• electrons (gae)

• nucleons (ge�
aN )

The axion mass, ma, is not a parameter in our solar ALP model,
since the axions produced in the Sun are relativistic, Ea � ma.
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XENON1T solar ALP signal

Solar ALPs can be produced in the Sun by:

• Atomic recombination and de-excitation, Bremsstrahlung,
and Compton (ABC)

• Primako� (P)

• 57Fe

They can interact in the detector by

• Axio-electric e�ect (aee)

• Inverse Primako� e�ect (iP) (Gao et al. 2020; Dent et al. 2020)

The la�er was not considered in the original XENON1T analysis.
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XENON1T solar ALP signal

The individual components are scaled by the e�ective axion
couplings. Schematically,

s = g2
ae ·
(
g2
ae · saee

ABC + g2
aγ · saee

P + (ge�
aN )

2 · saee
Fe

)
+

g2
aγ ·

(
g2
ae · siP

ABC + g2
aγ · siP

P + (ge�
aN )

2 · siP
Fe

)
The notation is sDetection

Production

We take the ABC, Primako� and 57Fe signal components from
fig. 1 of (Aprile et al. 2020). We compute the inverse Primako�
contributions following (Dent et al. 2020).
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XENON1T solar ALP signal

So, we scale the shaded areas up and down by the couplings and
sum them together
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DM ALPs

ALPs are viable DM candidates with a large parameter space
spanning many orders of magnitude in mass and coupling (Arias
et al. 2012; Marsh 2016).

We consider a phenomenological DM ALP model with 3
parameters:

• coupling to electrons (gae)

• mass (ma)

• fraction of the (local) DM around the Earth (η) that is made
up of ALPs

We don’t consider a photon coupling because of x-ray constraints
or a neutron coupling as it doesn’t impact the detection
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XENON1T DM ALP signal

The DM ALP signal is given by

s =0.841 t−1yr−1(
η ρ0

0.4 GeV/cm3

) ( ma

3 keV

) ( σpe(ma)

1.68× 10−19 cm2

) ( gae
10−14

)2

where σpe is the photoelectric cross section (Arisaka et al. 2013)
and ρ0 is the local DM density

A relic abundance of cold keV DM ALPs can be produced in the
early Universe by the non-thermal vacuum realignment
mechanism or thermally by the freeze-in mechanism

Several explicit models for a DM ALP with the required mass and
Standard Model couplings (Takahashi, Yamada, and Yin 2020; Li
2020).
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Are the solar and DM ALPs definitely di�erent?

In general, solar ALPs could be DM ALPs at the same time but

• XENON1T needs electron recoil energies of more than
about 1 keV

• DM ALPs in the halo are non-relativistic, so needs ma & 1 keV

• ALPs so heavy won’t be produced in the Sun as typical energy
scale keV

Lastly, we note that our DM ALP cannot be the QCD axion:
among many constraints, a keV QCD axion has a lifetime shorter
than the age of the Universe.
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Constraints



XENON1T & astrophysics

• The ALP interpretation of the XENON1T anomaly is in
tension with astrophysical observables — we must include
them in our analysis

• For each one, we construct a likelihood function. For a model
with parameters Θ

L(Θ) = p (Observed data |Model,Θ)

This tells us the probability of the observed data assuming a
particular model and set of parameters.

• The total likelihood function is just the product of XENON1T
likelihood and the astrophysical ones
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XENON1T

Construct XENON1T likelihood from binned data between 1 and
30 keV. A product of Poisson distributions,

L =
29

∏
i=1

λoi
i e−λi

oi !
, λi = ε · (αbbi + αt ti + si),

where oi are the observed counts; si are the signal predictions; bi
are the backgrounds, scaled by a factor αb; and ti is the tritium
background, scaled by αt

Expected events are scaled by the e�iciency ε.

The e�iciency and the background scale αb are varied with
Gaussian uncertainties 0.03 and 0.026, respectively (Chen et al.
2017; Aprile et al. 2020).
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Horizontal and Red Giant Branch stars

• Constraints on ALPs from the lifetime of
Horizontal Branch (HB) and Red Giant Branch (RGB)
stars (Ra�elt 1996)

• ALPs easily escape the star, leading to an additional cooling
channel

• Turned into a likelihood by measuring the ratio (R) of the
number of HB and the number of RGB stars in e.g. Galactic
globular clusters

• We use a likelihood based on (Gianno�i et al. 2016), first
implemented in (Hoof et al. 2019).

• Most robust and important astrophysical constraint
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White Dwarf cooling hints

• Measurements of the period decrease in a number of
pulsating WDs show anomalous cooling

• Consistent with an ALP-electron coupling of
gae ≈ 3× 10−13 (Gianno�i et al. 2016)

• Here we use a likelihood based on (Corsico et al. 2012b;
Corsico et al. 2012a; Córsico et al. 2016; Ba�ich et al. 2016),
first implemented in (Hoof et al. 2019)

• Interpretation somewhat controversial; systematic
uncertainties etc

For solar ALPs, WDs point to gae an order or magnitude lower than
required by XENON1T

For DM ALPs, WDs point to gae an order or magnitude higher than
required by XENON1T
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DM ALP decays

• If ALPs constitute some or all of DM, their decays into
photons would lead to potentially observable x-ray lines

• Strongest constraints stem from M31 (Horiuchi et al. 2014)
and NuSTAR (Perez et al. 2017)

gaγ . 10−16 GeV−1
( ma

1 keV

)−3/2
η−1/2

• Very strong constraint; we set gaγ = 0 explicitly

25/57



SN1987A cooling

Further cooling constraints from supernova SN1987A, though we
do not include SN1987A in our statistical analysis.

• SN1987A constrains axions and ALPs in numerous
ways (Ra�elt 1996) such as the neutrino cooling time

• Unfortunately, usually cited cooling bound not cast into a
statistical statement

• Statistical statements would require full supernova
simulations including ALPs
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Methodology



What do we do?

We need a statistical methodology to judge evidence for a discovery
taking into account the previous data

We consider:

1. Frequentist

2. Bayesian

3. Goodness-of-fit

4. Expected predictive accuracy
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Error theoretic

Construct a rule so that you’d wrongly reject the null hypothesis at a
pre-specified rate in the long-run in an ensemble of experiments

That is, control type-1 error rate. Type-1 error means we reject the
null when it was in fact true.

We can’t treat all models on equal footing — must specify a null —
and doesn’t consider only the evidence from this experiment — we
have to think about an ensemble of repeats.
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p-value

Compute a p-value

P (data more or as extreme as that observed | null hypothesis)

Leap from the observed data to data at least as extreme. This can
be challenging to compute.

To define more or as extreme, we introduce a test-statistic, λ, such
that

p-value = P (λ ≥ λObserved | null hypothesis)

Well-motivated choice

λ = 2 ln
maxL1

maxL0

where we maximise over the model’s parameters
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Interpreting p-values

Very popular in particle physics and elsewhere. Two possibly
contradictory interpretations:

• p is a measure of evidence against H0: small p⇒ H0

implausible.

• p is a means to control error rate: if we reject null when
p-value ≤ 0.05, for example, becomes error theoretic
approach with type 1 error rate 0.05.
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5σ discovery threshold

In particle physics, it’s common to translate p-values into Z -values.
5σ corresponds to about p = 10−7. This is just a convention
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5σ discovery threshold

In particle physics, it’s common to translate p-values into Z -values.
5σ corresponds to about p = 10−7. This is just a convention

It’s common to hear that we require 5σ for a discovery. Two
possibly contradictory interpretations:

• p is a measure of evidence against H0: 5σ is a threshold on
strength of evidence

• p is a means to control error rate: use 5σ as a desired type-1
long-run error rate
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What the p-value isn’t

The p-value itself isn’t formally a measure of evidence or an error
rate — it’s a means to controlling an error rate. The error rate itself
was specified prior to even collecting data (e.g., 5σ)

Yet it’s widely misinterpreted as both of those things

The fact that academics don’t know what p means is a symptom of the
fact that p doesn’t tell anything worth knowing (Wagenmakers 2020)
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Bayesian approach

Compute the change in plausibility of the background only model
relative to the signal model in light of the data

• If you like, you can compute the probability that you are
making an error in the case at hand (cf. long-run error rates
that are independent of the observed data)

• Typically shows weaker evidence for new physics than
suggested by p-value (Fowlie 2019) — see also Lindley’s
paradox (Lindley 1957) and (Fowlie 2020)

• We just apply probability theory to the problem (Je�reys
1939). Simple in theory; in practice there are di�iculties.
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Bayes factors

The Bayes factor (Kass and Ra�ery 1995) relates the relative
plausibility of two models a�er data to their relative plausibility
before data;

Posterior odds = Bayes factor × Prior odds

where

Bayes factor =
p (Observed data |Model a)
p (Observed data |Model b)

A nice result — by applying laws of probability, we see that models
should be compared by nothing other than their ability to predict
the observed data.
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Bayesian evidence

The factors in the ratio are Bayesian evidences

Z ≡ p (D |M) =
∫

ΩΘ
L(Θ)π(Θ) dΘ,

where D is the observed data, L(Θ) = p (D |Θ,M) is the
likelihood and π(Θ) = P (Θ |M) is our prior, and Θ are the
model’s parameters.

The prior describes what we knew about the parameters before
seeing the data

The evidence is the likelihood averaged over the prior — the
averaging penalises fine-tuned models
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Priors

Many consider the dependence of the Bayes factor on the priors to
be a major problem.

No priors, no predictions

I need to compare your model’s predictions with data. If you don’t
tell the plausible parameters, how am I to know what it predicts?

Sensitive to arbitrary choices

If the inference changes dramatically within a class of reasonable
priors, we can’t draw reliable conclusions.

Science is hard; it’s hard to get reliable knowledge about the world.
We o�en disagree about the consequences of experimental data.

How could it be any other way?
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Goodness of fit

Just compare goodness of fit by looking at ∆χ2. In this context

χ2 ≡ −2max lnL

Pros:

• Simple to compute

• Simple to communicate

Cons:

• How to interpret it?

• How to calibrate it without computing p-value?
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Box, Keynes & Spiegelhalter

Lastly, we will look at the DIC

• All models are wrong (Box 1976)!

• And who cares about the long run; in the long run, we’re all
dead (Keynes 1923)!

So (Spiegelhalter et al. 2002) doesn’t care about which model is
right or long-run error rates; only cares about which model likely
makes the best predictions for future data!
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DIC

So (Spiegelhalter et al. 2002) propose to measure the expected
predictive accuracy of a model through the Deviance Information
Criterion (DIC)

DIC ≡ −2 lnL(〈Θ〉) + 2pD

where 〈·〉 indicates a posterior mean,

〈θ〉 =
∫

θ p(θ |D,M) dθ,

where D is the data that we already observed and M denotes the
model.
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DIC

Notice the double use of the data in the term L(〈Θ〉); first in the
likelihood function and second in the estimate of the model’s
parameters.

The term,
pD ≡ 2

(
〈lnL(Θ)2〉 − 〈lnL(Θ)〉2

)
corrects bias from over-fi�ing and is motivated by an analytic
result for Gaussian posteriors

40/57



Computational methods



GAMBIT

Computation performed with GAMBIT!

G A M B I T

Recent collaborators:

F Agocs, V Ananyev, P Athron, C Balázs, A Beniwal, J Bhom, S 

Bloor, T Bringmann, A Buckley, J-E Camargo-Molina, C 

Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J 

Edsjö, B Farmer, A Fowlie, T Gonzalo, P Grace, W Handley, J 

Harz, S Hoof, S Hotinli, F Kahlhoefer, N Avis Kozar, A 

Kvellestad, P Jackson, A Ladhu, N Mahmoudi, G Martinez, MT 

Prim, F Rajec, A Raklev, J Renk, C Rogan, R Ruiz, I Sáez 

Casares, N Serra, A Scaffidi, P Scott, P Stöcker, W Su, J Van 

den Abeele, A Vincent, C Weniger, M White, Y Zhang

Members of:

ATLAS, Belle-II, CLiC, 

CMS, CTA, Fermi-LAT, 

DARWIN, IceCube, LHCb, 

SHiP, XENON

Authors of:

DarkSUSY, DDCalc, Diver, FlexibleSUSY, gamlike, GM2Calc, 

IsaTools, nulike, PolyChord, Rivet, SoftSUSY, SuperISO, SUSY-

AI, WIMPSim

70+ participants in 11 experiments and 14 major theory codes

41/57



Bayesian

• Numerical challenge — high-dimensional integration for
Bayesian evidence

• Nested sampling algorithm for Bayesian
computation (Skilling 2006)

• Implemented in MultiNest (Feroz, Hobson, and Bridges 2009)
— ellipsoidal rejection sampling e�icient for d . 20

• We performed state of the art cross checks (Fowlie, Handley,
and Su 2020)
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∆χ2

• Numerical challenge — find minimum of multi-dimensional
likelihood function

• Used samples from nested sampling — for moderate
dimensional problems and strict stopping conditions,
reasonable performance as optimiser

• Meta-heuristic di�erential evolution algorithm, implemented
in Diver (Martinez et al. 2017)
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p-values

• Numerical challenge — compute a tiny tail probability

• Asymptotic approximations — Wilks’ theorem (Wilks 1938)
etc) — aren’t strictly valid

• Ideally, requires expensive Monte Carlo simulations

• In some case, semi-analytic asymptotics for look-elsewhere
e�ect are possible (Gross and Vitells 2010)
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DIC

• Numerical challenge — compute posterior expectations

• Used weighted posterior samples returned by nested
sampling algorithm

〈θ〉 ≈ ∑wiθi

∑wi
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Results



Results

We consider data one by one

• XENON1T (Xe)

• Xe + R

• Xe + R + WD

for our solar ALP and DM ALP models and

• No 3H

• 3H in the signal and background models

• 3H background only
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Best-fit Xe spectra

Solar ALPs fit Xe anomaly but once astrophysical data added,
best-fit signal vanishes
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Best-fit Xe spectra

DM ALPs fit Xe anomaly even when simultaneously fit to
astrophysical data
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Best-fit Xe spectra

Tritium improves fit
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Solar ALP tension

The astrophysical data require considerably smaller couplings than
Xe and rule it out
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DM ALP resolution

DM ALP evade R constraint. By lowering DM fraction and
increasing couplings, Xe signal una�ected but fits WD hints
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Model comparison

From looking at the fits, we expect:

• DM ALP and solar ALP both favoured by Xe

• Tritium be�er than background but worse than ALPs

• But preference for solar ALP quashed by astrophysics

• DM ALP preference possibly enhanced by WD hints?

Let’s see what happened.
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∆χ2

Positive di�erences favor ALP models

Model
Xe Xe + R Xe + R + WD

χ2 ∆χ2 χ2 ∆χ2 χ2 ∆χ2

Background 44 0 45 0 67 0
Solar ALP 29 15 43 2 56 11
DM ALP 27 17 27 18 43 23

Background + 3H 34 0 35 0 57 0
Solar ALP + 3H 29 5 34 2 46 11
DM ALP + 3H 26 9 26 9 42 15
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∆χ2

Xe indeed favors ALPs

Model
Xe Xe + R Xe + R + WD

χ2 ∆χ2 χ2 ∆χ2 χ2 ∆χ2

Background 44 0 45 0 67 0
Solar ALP 29 15 43 2 56 11
DM ALP 27 17 27 18 43 23

Background + 3H 34 0 35 0 57 0
Solar ALP + 3H 29 5 34 2 46 11
DM ALP + 3H 26 9 26 9 42 15
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∆χ2

R parameter destroys preference for solar ALP but not DM ALP

Model
Xe Xe + R Xe + R + WD

χ2 ∆χ2 χ2 ∆χ2 χ2 ∆χ2

Background 44 0 45 0 67 0
Solar ALP 29 15 43 2 56 11
DM ALP 27 17 27 18 43 23

Background + 3H 34 0 35 0 57 0
Solar ALP + 3H 29 5 34 2 46 11
DM ALP + 3H 26 9 26 9 42 15
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∆χ2

WD hints favor ALPS and Xe and WD hints add together for DM
ALP but not solar ALP

Model
Xe Xe + R Xe + R + WD

χ2 ∆χ2 χ2 ∆χ2 χ2 ∆χ2

Background 44 0 45 0 67 0
Solar ALP 29 15 43 2 56 11
DM ALP 27 17 27 18 43 23

Background + 3H 34 0 35 0 57 0
Solar ALP + 3H 29 5 34 2 46 11
DM ALP + 3H 26 9 26 9 42 15
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∆χ2

ALPs still preferred in presence of tritium

Model
Xe Xe + R Xe + R + WD

χ2 ∆χ2 χ2 ∆χ2 χ2 ∆χ2

Background 44 0 45 0 67 0
Solar ALP 29 15 43 2 56 11
DM ALP 27 17 27 18 43 23

Background + 3H 34 0 35 0 57 0
Solar ALP + 3H 29 5 34 2 46 11
DM ALP + 3H 26 9 26 9 42 15
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p-values

Too challenging to reliably compute!

• Asymptotic approximations that provide simple relations
between ∆χ2 and p aren’t strictly applicable

• There is a look-elsewhere e�ect e.g., in the DM ALP mass

• Correction would require expensive simulations

Local significance for DM ALP from Xe + R + WD roughly 4.3σ
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Bayes factors for solar ALP

Bayes factors show change in plausibility of solar ALP relative to
background only. Partial Bayes factors (Xe | ·) show change
induced by Xe given the astrophysical data. Greater (less) than one
means ALP (background only) favored

Xe += R += WD (Xe | R) (Xe | R + WD)

No 3H 2.7 0.26 1.3 0.99 0.92
3H 0.64 0.27 1.0 1.0 0.73
3H bkg only 0.52 0.051 0.25 0.19 0.18
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Bayes factors for solar ALP

Xe mildly favored solar ALPs

Xe += R += WD (Xe | R) (Xe | R + WD)

No 3H 2.7 0.26 1.3 0.99 0.92
3H 0.64 0.27 1.0 1.0 0.73
3H bkg only 0.52 0.051 0.25 0.19 0.18
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Bayes factors for solar ALP

But preference wiped out by R

Xe += R += WD (Xe | R) (Xe | R + WD)

No 3H 2.7 0.26 1.3 0.99 0.92
3H 0.64 0.27 1.0 1.0 0.73
3H bkg only 0.52 0.051 0.25 0.19 0.18
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Bayes factors for solar ALP

Partial Bayes factors show that Xe didn’t tell us much new given
the astrophysical data

Xe += R += WD (Xe | R) (Xe | R + WD)

No 3H 2.7 0.26 1.3 0.99 0.92
3H 0.64 0.27 1.0 1.0 0.73
3H bkg only 0.52 0.051 0.25 0.19 0.18
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Bayes factors for solar ALP

Tritium slightly preferred over ALPs by Xe; more economical
explanation

Xe += R += WD (Xe | R) (Xe | R + WD)

No 3H 2.7 0.26 1.3 0.99 0.92
3H 0.64 0.27 1.0 1.0 0.73
3H bkg only 0.52 0.051 0.25 0.19 0.18
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Bayes factor for DM ALP

Xe favors background only! DM ALP requires tuning mass and DM
fraction etc

Xe += R += WD (Xe | R) (Xe | R + WD)

No 3H 0.8 0.8 2 1 3
3H 0.5 0.5 0.7 0.9 1
3H bkg only 0.1 0.2 0.4 0.3 0.6
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Bayes factor for DM ALP

Astrophysics mildly increase preference for DM ALP

Xe += R += WD (Xe | R) (Xe | R + WD)

No 3H 0.8 0.8 2 1 3
3H 0.5 0.5 0.7 0.9 1
3H bkg only 0.1 0.2 0.4 0.3 0.6
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Prior dependence

Only weak evidence for any ALPs. How strong was the prior
dependence? Vary the prior ranges for the solar ALP couplings.
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Whilst the maximum is about 1500, that occurs only when the
prior is carefully centred around the observed best-fits. Typically
less than about 10
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Di�erences in DIC

Finally, we turn to DIC. Positive di�erences favor ALP models

Xe (Xe + R) (Xe + R + WD)

Solar ALP

No 3H −5 0.002 −8
3H 0.6 0.5 −10
3H bkg only −1 3 −4

DM ALP

No 3H −30 −40 −40
3H −2 −3 −20
3H bkg only −20 −40 −40
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Di�erences in DIC

Finally, we turn to DIC.

We found the DIC incoherent in this se�ing. E.g., R increases
preference for solar ALPs�

Xe (Xe + R) (Xe + R + WD)

Solar ALP

No 3H −5 0.002 −8
3H 0.6 0.5 −10
3H bkg only −1 3 −4

DM ALP

No 3H −30 −40 −40
3H −2 −3 −20
3H bkg only −20 −40 −40 56/57



Di�erences in DIC

Finally, we turn to DIC.

DIC was motivated by simple Gaussian case. Our problem
deviated from that by the fat-tails in the distributions of allowed
couplings

Couplings close to zero weren’t completed ruled out.

56/57



Summary

• XENON1T anomaly could be explained by solar or DM ALPs

• Examined anomaly through several statistical methodologies

• Agreement that, given astrophysics, Xe provides at best weak
evidence for solar ALP model

• Agreement that DM ALPs evade astrophysical constraints and
even fit WD hints

• Disagreement about strength of evidence for DM ALP model
— Bayesian analysis suggesting weaker evidence

• p-values were computationally challenging to compute
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