

@ HECA 21/04/2020

Aspects of dark matter long-range interactions at finite temperature (Part II)

Tobias Binder

based on

1808.06472, 1910.11288, 2002.07145,

in collaboration with

Burkhard Blobel, Laura Covi, Julia Harz, Kyohei Mukaida (Part I) and Kalliopi Petraki.

Motivation

- Strong constraints put many MeV-TeV mass realizations in thermal WIMP scenarios under tension.
- TeV-scale and above still remains attractive and much less constrained.
- Prediction of heavy thermal relics and indirect signals requires inclusion of long-range effects.

 $m_{\rm mediator} \gg \alpha m_{\chi}$

"Heavy WIMPs"

 $m_{\rm mediator} \lesssim \alpha m_{\chi}$

- Experimental probes sensitive to predicted WIMP mass
- Can finite temperature effects modify prediction?

Overview

1 Introduction: long-range force effects in vacuum

- Sommerfeld-enhanced annihilation and bound-state decay (Nonrelativistic EFT)
- Bound-state formation (Potential nonrelativistic EFT)

2 High-to-intermediate temperature regime

- Number density equation from Keldysh-Schwinger formalism
- Effective in-medium potential for SE and BS decay
 1808.06472
- Melting of bound states

3 Intermediate-to-low temperature regime

- Number density equation from density-matrix formalism 1910
- Bound-state formation via bath-particle scattering

1910.11288, 2002.07145

4 Impact on thermal relic abundance

Quantum mechanical effects: Positronium

Bound-state decay and Sommerfeld-enhanced annihilation:

Nonrelativistic description allows to factorize long- and short-wavelength parts.

 $(\sigma v) = (\sigma v)_0 \times |\psi_{E>0}(r=0)|^2$ $\propto (\sigma v)_0 (\alpha/v)$, for $v \lesssim \alpha$. A. Sakharov 1948

A. Sommerfeld 1931)

(for s-wave)

Nonrelativistic EFT: Caswell & Lepage 1986

Bound-state formation:

Electric dipole transitions

Capture into ground state nlm=100 via on-shell photon emission:

 $(\sigma v)_{100}^{
m bsf} \sim 3 \times (\sigma v)^{
m ann}, \text{ for } v \ll \alpha$

Potential Nonrelativistic EFT: Brambilla, Pineda, Soto & Vairo 2000

Quantum mechanical effects: dark matter

SM mediated:

- EW charged DM, Minimal DM Hisano et al. '03, '05, '06, Cirelli et al. '07,..., Hryczuk et al. '10+, ..., Mitridate et al. '17,...
- Colored coannihilation J. Ellis *et al.* '16, Kim&Laine '17, Harz&Petraki '18, S. Biodini *et al.* '19+,...
- Higgs mediated bound states Harz&Petraki '18, S. Biodini '18+,...
 - ► Covers all SM force-carriers: W^{\pm}, Z, γ, g, H .

BSM mediated:

 SIDM can solve Diversity problem Kamada et al. '16,...,

Kaplinghat *et al.* '19

High-to-intermediate temperature regime

Sommerfeld-enhanced annihilation and bound-state decay at finite temperature

What do we expect?

• Nice analogy between heavy DM in the primordial plasma and heavy quarkonia in quark-gluon plasma.

Historical remarks

<u>Heavy Quarkonia annihilation/decay in</u> <u>QGP plasma</u>

- Matsui & Satz 1986: J/Psi suppression in QGP due to screening effect
 - In-medium potential from 2 Polyakov loop (Wilson line)
 - $\blacktriangleright \quad \lim_{t \to \infty} V(t, \mathbf{r}) = -\frac{\alpha}{r} e^{-m_D r}$
- M. Laine et al. 2007 (seminal)
 - 4 Polyakov loop method

Dark Matter Sommerfeld-enhanced annihilation/decay in primordial plasma

- Cirelli et al. 2007 (Minimal DM)
 - (only) Debye screening included
 - Wino mass lowered (?)
- Bödeker & Laine 2012
 - For quarkonia, spectral information sufficient. For DM, we need dynamics!
 - Linear response "matched" to Boltzmann equation in the linear regime close to chemical equilibrium
 - Formalism allows to include thermal corrections to Sommerfeld enhanced annihilation and bound state decay
 - > See also follow-ups by Biondini, Kim, Laine

Previous literature in more detail

1) Effective in-medium potential [M. Laine et al. '07]

extraced from Euclidian 4-Polyakov loop (Wilson lines) method

2) Number density equation [Bödeker&Laine '12]

 $\dot{\delta n} = -\Gamma_{\rm chem} \delta n(t) + \xi(t)$ (Langevin equation)

matching Γ_{chem}

$$\dot{n} + 3Hn = -\Gamma_{\text{chem}}(n - n_{\text{eq}}) + \mathcal{O}([n - n_{\text{eq}}]^2)$$
 (linearized BE)

$$\dot{}$$
 $\dot{n} + 3Hn = -\frac{\Gamma_{\text{chem}}}{2n_{\text{eq}}}(n^2 - n_{\text{eq}}^2)$ (quadratic BE)

CTP-formalism approach

Non-equilibrium QFT ⇒ In-medium potential + dynamics in one formalism

Scheme overview:

I Non-relativistic effective action

II Number density equation from EoM of 2-point correlation functions

III Resummation scheme of 4-point correlator and effective potential

1808.06472

$$\mathcal{L} \supset g\bar{\chi}\gamma^{\mu}\chi A_{\mu} + \underline{g\bar{\psi}\gamma^{\mu}\psi A_{\mu}}$$
Essentially the same as in vacuum
$$Non-relativistic effective action on CTP-contour$$

$$S_{\mathrm{NR}}[\eta,\xi] = \int_{x\in\mathcal{C}} \eta^{\dagger} \Big[i\partial_t + \frac{\Delta}{2M} \Big] \eta + \xi^{\dagger} \Big[i\partial_t - \frac{\Delta}{2M} \Big] \xi + \int_{x,y\in\mathcal{C}} i\frac{g^2}{2} \underbrace{J(x)D(x,y)J(y)}_{\text{"potential"}} + i \underbrace{O^{\dagger}(x)\Gamma(x,y)O(y)}_{\text{"annihilation"}},$$

- Separation of short- and long-range contributions, $J \equiv \eta^{\dagger} \eta + \xi^{\dagger} \xi, O \equiv \xi^{\dagger} \eta$
- Correlator $D(x,y) \equiv \langle T_{\mathcal{C}}A_0(x)A_0(y) \rangle$ contains information of the bath

$$\psi = \psi + \psi$$

Number density equation from EoM of two-point function

$$\dot{n}_{\eta} + 3Hn_{\eta} = -2(\sigma v)_0 \left[G_{\eta\xi}^{++--}(x, x, x, x) - G_{\eta\xi}^{++--}(x, x, x, x) \Big|_{eq} \right].$$
$$n_{\eta}(x) \equiv \langle \eta^{\dagger}(x)\eta(x) \rangle, \ G_{\eta\xi}(x, y, z, w) \equiv \langle T_{\mathcal{C}}\eta(x)\xi^{\dagger}(y)\xi(w)\eta^{\dagger}(z) \rangle$$

Free limit:
$$2G_{\eta\xi}^{++--}(x,x,x,x) \simeq n_{\eta}n_{\xi} \longrightarrow \frac{\dot{n}_{\eta} + 3Hn_{\eta} = -(\sigma v)_0 \left[n_{\eta}n_{\xi} - n_{\eta}^{eq}n_{\xi}^{eq}\right]}{Lee-Weinberg\ equation\ \checkmark}$$

- Treat annihilation as perturbation
 Assume grand canonical state \$\rho \propto e^{-\beta(\heta \mu_\eta \hotnot \nu_\sigma \mu_\xigma \hoton \ho

$$G_{\eta\xi}^{++--}(x,x,x,x) = e^{-2\beta(M-\mu)} \int \frac{\mathrm{d}^{3}\mathbf{P}}{(2\pi)^{3}} e^{-\beta\mathbf{P}^{2}/(4M)} \int_{-\infty}^{\infty} \frac{\mathrm{d}E}{(2\pi)} e^{-\beta E} G_{\eta\xi}^{\rho}(\mathbf{0},\mathbf{0};E).$$

Compute spectral function from retarded correlator:

$$G^{\rho}_{\eta\xi} = 2\Im[iG^R_{\eta\xi}]$$

3-time problem, KMS ?, no thermal width appears in static limit.

III <u>Resummation and effective potential</u>

Retarded component is of special interest:

$$\begin{bmatrix} \nabla_{\mathbf{r}}^2 \\ M \end{bmatrix} + E + i\epsilon - V_{\text{eff}}(\mathbf{r}, T) \end{bmatrix} G_{\eta\xi}^R(\mathbf{r}, \mathbf{r}'; E) = 2i\delta(\mathbf{r} - \mathbf{r}')$$
$$G_{\eta\xi}^\rho = 2\Im[iG_{\eta\xi}^R]$$

In static limit and Hard-Thermal-Loop approximation:

Soft bath particle scattering aka "Landau damping" leads to thermal width.

$$V_{\rm eff}(\mathbf{r},T) \equiv -ig_{\chi}^2 \int \frac{{\rm d}^3 p}{(2\pi)^3} (1-e^{i\mathbf{p}\mathbf{r}}) D^{++}(0,\mathbf{p}) = -\alpha_{\chi} m_D - \frac{\alpha_{\chi}}{r} e^{-m_D r} - i\alpha_{\chi} T \phi(m_D r)$$

Independent derivation.

consistent with [M. Laine et al. '07]

Phenomenology: vacuum limit

$$\dot{n} + 3Hn = -2(\sigma v)_0 G_{\eta\xi}^{++--}(x, x, x, x) \big|_{eq} \left[e^{\beta 2\mu} - 1 \right],$$
$$G_{\eta\xi}^{++--} \big|_{eq} = e^{-2\beta M} \int \frac{\mathrm{d}^3 \mathbf{P}}{(2\pi)^3} e^{-\beta \mathbf{P}^2/(4M)} \int_{-\infty}^{\infty} \frac{\mathrm{d}E}{(2\pi)} e^{-\beta E} G_{\eta\xi}^{\rho}(\mathbf{0}, \mathbf{0}; E).$$

 $\lim_{T \to 0} V_{\text{eff}}(r, T)$

$$\dot{n} + 3Hn = -\left(\langle (\sigma v)_0 S \rangle + \sum_{\mathcal{B}} \Gamma_{\mathcal{B}} \frac{n_{\mathcal{B}}^{\text{eq}}}{n_{\chi}^{\text{eq}} n_{\bar{\chi}}^{\text{eq}}} \right) \left[(\alpha n)^2 - n_{\chi}^{\text{eq}} n_{\bar{\chi}}^{\text{eq}} \right]$$

BEs in (Saha) ionization equilibrium \checkmark

Phenomenology: finite temperature

$$\dot{n} + 3Hn = -2(\sigma v)_0 G_{\eta\xi}^{++--}(x, x, x, x) \big|_{eq} \left[e^{\beta 2\mu} - 1 \right],$$
$$G_{\eta\xi}^{++--} \big|_{eq} = e^{-2\beta M} \int \frac{\mathrm{d}^3 \mathbf{P}}{(2\pi)^3} e^{-\beta \mathbf{P}^2/(4M)} \int_{-\infty}^{\infty} \frac{\mathrm{d}E}{(2\pi)} e^{-\beta E} G_{\eta\xi}^{\rho}(\mathbf{0}, \mathbf{0}; E).$$

full $V_{\text{eff}}(r,T) = -\alpha_{\chi}m_D - \frac{\alpha_{\chi}}{r}e^{-m_Dr} - i\alpha_{\chi}T\phi(m_Dr)$

DM bound states melted around freeze-out T

high

► 1

Advantage

- Everything included
- Finite temperature corrections

Limitation

- HTL resummation
- Ionization equilibrium
- When does the system depart from ionization equilibrium?

Relevance

 $\dot{\alpha}$ intermediate $\dot{\alpha}^2$

• Compared to SE only, corrections are relevant

low

 T/m_{γ}

 Compared to SE+bound states in vacuum, corrections might be less relevant. ("Probability conservation" ?)

京大学 国際高等研究所 カブリ数物連携宇宙研究機構

3.) Which process dominates?

2.) Cancellation of collinear divergences?

1.) How can we systematically compute higher order BSF processes?

Number density equation

 $\mathcal{L} \supset g\bar{\chi}\gamma^{\mu}\chi A_{\mu} + \mathcal{L}_{\mathrm{environment}}$

Dipole Operator (pNREFT):

$$H_{\rm dip}(t) = -\sum_{\rm Spin} \int d^3x d^3r \ O_{sr}^{\dagger}(\mathbf{x}, \mathbf{r}, t) \left[g \ \mathbf{r} \cdot \mathbf{E}(\mathbf{x}, t) \right] O_{sr}(\mathbf{x}, \mathbf{r}, t), \text{ where}$$
$$O_{sr}(\mathbf{x}, \mathbf{r}, t) = \int \frac{d^3K}{(2\pi)^3} \left\{ \sum_{\mathcal{B}} e^{-i(\mathcal{E}_{\mathcal{B}}t - \mathbf{K} \cdot \mathbf{x})} \psi_{\mathcal{B}}(\mathbf{r}) \hat{c}_{\mathcal{B}, \mathbf{K}}^{sr} + \int \frac{d^3k}{(2\pi)^3} e^{-i(\mathcal{E}_{\mathbf{k}}t - \mathbf{K} \cdot \mathbf{x})} \psi_{\mathbf{k}}(\mathbf{r}) \hat{a}_{\mathbf{K}/2 + \mathbf{k}}^{s} \hat{b}_{\mathbf{K}/2 - \mathbf{k}}^{r} \right\}.$$

Density matrix formalism:

$$\dot{n}_{\chi} = \frac{1}{\operatorname{vol}(\mathbb{R}^3)} \int \frac{\mathrm{d}^3 k_{\chi}}{(2\pi)^3} \operatorname{Tr}\left[\dot{\hat{\rho}}_I \hat{n}_{\mathbf{k}_{\chi}}\right]$$
$$\simeq -\frac{1}{\operatorname{vol}(\mathbb{R}^3)} \int \frac{\mathrm{d}^3 k_{\chi}}{(2\pi)^3} \lim_{t \to \infty} \int_0^t \mathrm{d}t' \operatorname{Tr}\left\{\left[\left[\hat{n}_{\mathbf{k}_{\chi}}, \hat{H}_I(t)\right], \hat{H}_I(t')\right] \hat{\rho}(t=0)\right\}.$$

Computation of double commutator for dipole Hamiltonian gives:

$$\dot{n}_{\chi} + 3Hn_{\chi} = -\sum_{\mathcal{B}} \langle \sigma_{\mathcal{B}}^{\mathrm{BSF}} v_{\mathrm{rel}} \rangle \left[n_{\chi} n_{\bar{\chi}} - n_{\mathcal{B}} n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}} / n_{\mathcal{B}}^{\mathrm{eq}} \right] + \text{annihilation}$$
$$\dot{n}_{\mathcal{B}} + 3Hn_{\mathcal{B}} = + \langle \sigma_{\mathcal{B}}^{\mathrm{BSF}} v_{\mathrm{rel}} \rangle \left[n_{\chi} n_{\bar{\chi}} - n_{\mathcal{B}} n_{\chi}^{\mathrm{eq}} n_{\bar{\chi}}^{\mathrm{eq}} / n_{\mathcal{B}}^{\mathrm{eq}} \right] + \text{decay}$$

$$\sigma_{nlm}^{\rm BSF} v_{\rm rel} = \int \frac{{\rm d}^3 p}{(2\pi)^3} D_{\mu\nu}^{-+}(\Delta E, \mathbf{p}) \mathcal{T}^{\mu}_{\mathbf{k}, nlm}(\Delta E, \mathbf{p}) \mathcal{T}^{\nu\star}_{\mathbf{k}, nlm}(\Delta E, \mathbf{p}).$$

BSF efficient:

\Rightarrow	$\frac{n_{\chi}n_{\bar{\chi}}}{n_{\chi}^{\rm eq}n_{\bar{\chi}}^{\rm eq}}$	$=rac{n_{\mathcal{B}}}{n_{\mathcal{B}}^{\mathrm{eq}}}$
	$m_{\chi} m_{\chi}$	^{n}B

Ionization equilibrium

Generalized bound-state formation cross section

First contact with the plasma

Leading and next-to-leading order

Tobias Binder

Next-to-leading order in more detail

- **—** Finite in collinear direction, and UV finite after vacuum renormalization.
- Provide mathematical proof for cancellation of collinear divergences.
- Holds even for arbitrary phase-space distribution of bath particles,
 i.e. bath particles do not have to be in thermal equilibrium in order
 to guarantee finiteness in the forward scattering direction.
- Bloch-Nordsieck or Kinoshita-Lee-Nauenberg theorem does not help here

PMU

Sketch of proof

22

Bound-state formation at NLO: massless case

Interference terms cancel collinear divergences, resulting in a finite cross section.

- For T> binding energy
 BSF via bath-particle scattering dominates over on-shell mediator emission.
- Variation of renormalization scale between DM mass and binding energy does not affect plot visually, hence Log-contributions are under control.

 $x = m_{\chi}/T$

Impact on thermal relic abundance

BSF via bath-particle scattering: massive case

$$\dot{n}_{\chi} + 3Hn_{\chi} = -\left[\langle\sigma^{an}v_{rel}\rangle + W(T)\right] \left[n_{\chi}^{2} - (n_{\chi}^{eq})^{2}\right],$$

$$W \equiv \langle\sigma^{BSF}_{100}v_{rel}\rangle \frac{(1/4) \Gamma^{dec}_{100,S}}{\Gamma^{dec}_{100,S} + \Gamma^{dis}_{100}} + \frac{(3/4) \Gamma^{dec}_{100,T}}{\Gamma^{dec}_{100,T} + \Gamma^{dis}_{100}}.$$

$$\sigma^{BSF}_{100} = \langle\sigma^{BSF}_{100}v_{rel}\rangle (n_{\chi}^{eq})^{2}/n_{100}^{eq}$$

$$F_{100} = \langle\sigma^{BSF}_{100}v_{rel}\rangle (n_{\chi}^{eq})^{2}/n_{100}^$$

no kinematical block

additional depletion

fixed T.

maximum value for

Relic abundance: massless vector mediator

Remarks:

- For larger N, effect increases.
- Boltzmann formalism would have failed in massless limit.
- Insertion of screening mass by hand would have overestimated the effect.

BSF via bath-particle scattering: massive case

- Interference terms negligible for mediator masses much larger than binding energy: Boltzmann computation ok.
- Thermal field theory approach required for mediator masses smaller than or comparable to the binding energy.

More complete picture

Tobias Binder

Summary and conclusion

Formal achievements:

- Proof for cancellation of collinear divergences.
- More complete description of the DM freeze-out: from melting of bound states down to far below the decoupling from ionization equilibrium.

Phenomenological results and their implications:

- Real part corrections partially cancel each other.
- Impact of a large thermal width in co-annihilation scenarios unclear.
- T> binding energy: **dominant BSF channel** is **via bath-particle scattering**.
- Statement expected to be true also for non-abelian gauge or Yukawa theories.
- Consequently, DM mass could be (a bit) heavier than previously expected.

Backup

