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Motivation

● Strong constraints put many MeV-TeV mass realizations 
in thermal WIMP scenarios under tension.

● TeV-scale and above still remains attractive and much 
less constrained.

● Prediction of heavy thermal relics and indirect signals 
requires inclusion of long-range effects.

● Experimental probes sensitive to predicted WIMP mass
● Can finite temperature effects modify prediction?

 

“Light WIMPs” “Heavy WIMPs”
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Overview

1 Introduction: long-range force effects in vacuum
➢ Sommerfeld-enhanced annihilation and bound-state decay (Nonrelativistic EFT)

➢ Bound-state formation (Potential nonrelativistic EFT)

2 High-to-intermediate temperature regime
➢ Number density equation from Keldysh-Schwinger formalism

➢ Effective in-medium potential for SE and BS decay

➢ Melting of bound states

3 Intermediate-to-low temperature regime
➢ Number density equation from density-matrix formalism

➢ Bound-state formation via bath-particle scattering

4 Impact on thermal relic abundance

high intermediate low

1808.06472

1910.11288, 
2002.07145
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Quantum mechanical effects: Positronium

➢Bound-state decay and Sommerfeld-enhanced annihilation:

Capture into ground state nlm=100 via on-shell photon emission:

➢Bound-state formation:

(for s-wave)

J. Wheeler 1946

A. Sakharov 1948
(A. Sommerfeld 1931)

Nonrelativistic description allows to factorize
long- and short-wavelength parts. Nonrelativistic EFT:  Caswell & Lepage 1986

Potential Nonrelativistic EFT: 
Brambilla, Pineda, Soto & Vairo 2000Electric dipole transitions

J. Pirenne 1946,
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Quantum mechanical effects: dark matter

QM effects allow for larger DM masses:

Petraki et al. 2015

● EW charged DM, Minimal DM
Hisano et al. ‘03, ‘05, ‘06, Cirelli et al. ‘07,…, Hryczuk et al. ‘10+,
…, Mitridate et al. ‘17,...

● Colored coannihilation
J. Ellis et al.  ‘16, Kim&Laine  ‘17,
Harz&Petraki  ‘18, S. Biodini et al. ’19+,...

● Higgs mediated bound states
 Harz&Petraki  ‘18, S. Biodini ‘18+,...

BSM mediated:
●  Self-Interacting DM with new light mediators

  von Harling&Petraki ‘14, … [many] 

SM mediated:

 Covers all SM force-carriers:

SIDM can solve 
Diversity problem
Kamada et al. ‘16,..., 
Kaplinghat et al. ‘19
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High-to-intermediate temperature regime

high intermediate low

Sommerfeld-enhanced annihilation and 
bound-state decay at finite temperature
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What do we expect?

high intermediate low

CMS collaboration,
Phys.Lett. B790 (2019) 270-293

Sequential melting of 
b-bbar bound states 
inside QGP plasma  
observed.

● Nice analogy between heavy DM in the primordial plasma and
heavy quarkonia in quark-gluon plasma.
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Historical remarks

● Matsui & Satz 1986: J/Psi suppression in 
QGP due to screening effect

➢ In-medium potential from 2 Polyakov loop 
(Wilson line)

➢

● M. Laine et al. 2007 (seminal)

➢ 4 Polyakov loop method

● Cirelli et al. 2007 (Minimal DM)

➢ (only) Debye screening included

➢ Wino mass lowered (?)

● Bödeker & Laine 2012

➢ For quarkonia, spectral information 
sufficient. For DM, we need dynamics!

➢ Linear response “matched” to Boltzmann 
equation in the linear regime close to 
chemical equilibrium

➢ Formalism allows to include thermal 
corrections to Sommerfeld enhanced 
annihilation and bound state decay

➢ See also follow-ups by Biondini, Kim, Laine

Dark Matter Sommerfeld-enhanced 
annihilation/decay in primordial plasma

Heavy Quarkonia annihilation/decay in 
QGP plasma

Salpeter correction Thermal width
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Previous literature in more detail

1) Effective in-medium potential [M. Laine et al. ‘07]

extraced from Euclidian 4-Polyakov loop (Wilson lines) method

 

2) Number density equation [Bödeker&Laine ‘12]

                                           

matching
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CTP-formalism approach

I Non-relativistic effective action

II Number density equation from EoM of 2-point correlation functions

III Resummation scheme of 4-point correlator and effective potential

Non-equilibrium QFT     ⇒  In-medium potential + dynamics in one formalism 

Scheme overview:

1808.06472
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Scheme

I Non-relativistic effective action on CTP-contour

● Separation of short- and long-range contributions,

● Correlator                                             contains information of the bath

Essentially the same as in vacuum
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Scheme

II Number density equation from EoM of two-point function

● Treat annihilation as perturbation
● Assume grand canonical state                                      and use KMS relation:  

Free limit:

Compute spectral function from retarded correlator:
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Scheme

After truncation:

“Bethe-Salpeter equation”

3-time problem, KMS ?, no thermal width appears in static limit.

Instead, resummation of ALL contributions to order 

No 3-time problem, resummation scheme respects 
KMS condition, reproduces 4-Polyakov result...
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Scheme

III Resummation and effective potential

Soft bath particle scattering aka “Landau 
damping” leads to thermal width.

In static limit and Hard-Thermal-Loop approximation:

[M. Laine et al. ‘07]consistent with

Retarded component is of special interest:

Independent derivation. 
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Phenomenology: vacuum limit

That’s one of the limitation!



16

Phenomenology: finite temperature

high intermediate low

●  Everything included
●  Finite temperature corrections 

●  Compared to SE only,  
corrections are relevant

●  Compared to SE+bound 
states in vacuum, 
corrections might be less 
relevant. (“Probability 
conservation” ?) 

Advantage Relevance

Limitation
●  HTL resummation
●  Ionization equilibrium
● When does the system 

depart from ionization 
equilibrium?

DM bound states melted around freeze-out T
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Intermediate-to-low temperature regime

high intermediate low

vs.

(previous literature) (similar diagram leads to bound-state melting)

3.) Which process dominates?

1.) How can we systematically compute higher order BSF processes?

2.) Cancellation of collinear divergences?

BSF via bath-particle scatteringBSF via on-shell mediator emission
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Number density equation

Dipole Operator (pNREFT):

Density matrix formalism:

Computation of double commutator for dipole Hamiltonian gives:

BSF efficient:

Ionization equilibrium
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Generalized bound-state formation cross section

Kubo-Martin-Schwinger relation:

Previous literature provides many other types of transition ME as well.

Dipole transition matrix elements:Mediator two-point correlation fct.:

First contact with the plasma
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Leading and next-to-leading order

2

2

2

[ ]

[ ]
Interference

Off-shell decay
Bath-particle scattering

On-shell emission
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Next-to-leading order in more detail

2 2

+ +

UV finite,
collinear divergent.

UV finite,
collinear divergent.

Vacuum part UV 
divergent,
collinear divergent.

= Finite in collinear direction, and UV finite after vacuum renormalization.

● Provide mathematical proof for cancellation of collinear divergences.

● Holds even for arbitrary phase-space distribution of bath particles, 

i.e. bath particles do not have to be in thermal equilibrium in order

 to guarantee finiteness in the forward scattering direction.

● Bloch-Nordsieck or Kinoshita–Lee–Nauenberg theorem does not help here
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Sketch of proof

[ ]

Collinear divergences cancel in the sum!

double pole cut single pole cut
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● Interference terms cancel 
collinear divergences, 
resulting in a finite cross 
section.

● For T> binding energy        
BSF via  bath-particle 
scattering dominates over 
on-shell mediator 
emission.

● Variation of renormalization 
scale between DM mass  
and binding energy does 
not affect plot visually, 
hence Log-contributions are 
under control.

Bound-state formation at NLO: massless case

[ ]

[ ]



24Tobias Binder

Impact on thermal relic abundance
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BSF via bath-particle scattering: massive case

no kinematical block

additional depletion

Enhanced BSF via bath-
particle scattering leads 
to longer period of 
ionization equilibrium,  
where effective 
depletion cross 
section W takes 
maximum value for 
fixed T.
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Relic abundance: massless vector mediator

“One quark” scenario:
(more conservative)

● For larger N, effect increases.
● Boltzmann formalism would have failed in massless limit.
● Insertion of screening mass by hand would have 

overestimated the effect.

Remarks:
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BSF via bath-particle scattering: massive case

● Thermal field theory 
approach required for 
mediator masses smaller 
than or comparable to the 
binding energy.

● Interference terms 
negligible for mediator 
masses much larger than 
binding energy: Boltzmann 
computation ok.

+ Interference
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More complete picture

Thermal effects:
Screening, energy shift,
large thermal width. BSF dominated by NLO processes. BSF dominated by LO processes.

Ionization equilibrium decoupling

Limitation: Ionization equilibrium 

Matching
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Summary and conclusion

● Real part corrections partially cancel each other.

● Impact of a large thermal width in co-annihilation scenarios unclear.

● T> binding energy: dominant BSF channel is via bath-particle scattering.

● Statement expected to be true also for non-abelian gauge or Yukawa theories.

● Consequently,  DM mass could be (a bit) heavier than previously expected.

● Proof for cancellation of collinear divergences.

● More complete description of the DM freeze-out: from melting of bound states 
down to far below the decoupling from ionization equilibrium.

Phenomenological results and their implications:

Formal achievements:
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Backup
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