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• Neutrino oscillations, masses and PMNS (Pontecorvo-Maki-

Nakagawa-Sakata) matrix

• Charged-lepton flavor violation (CLFV) in the SM with a (very 

brief) experimental review

• Sizable CLFV from New physics

• Connections to LNV (lepton number violation)
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• Effective operator 𝑂" with sizable 𝜇$ → 𝑒' but w/o large 𝑚)

• Exhaustive tree-level UV models  

• Various experimental constraints

• Conclusions
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Ø In the SM, there is no tree-level CLFV

Neutrino oscillations and masses
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Ø The lepton mixing matrix in the SM is unphysical if neutrinos are 

massless or degenerate in mass! 

Neutrino oscillations and masses
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where Uαi are the elements of the neutrino, or lepton mixing matrix, also
referred to as the Maki-Nakagawa-Sakata (MNS) matrix, or the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS, or MNSP) matrix. This means that, say,
during β-decay, an electron and a linear combination of antineutrinos with
well-defined masses are produced such that m2

νe
discussed above is given

byl
∑

i |Uei|2m2
i .

Now, a more canonical description of fermion mixing. The relevant
part of the weak-interaction Lagrangian is, assuming that the neutrinos are
Dirac fermions and starting in the weak-basis where the charged-current
interactions are diagonal,

L ⊃ gēα
LWµγµνα

L + ēα
Lme,αβeβ

R + ν̄α
Lmν,αβνβ

R + H.c.

= gēα
LWµγµνα

L + ēα
L(V †

e )iαmD
e,ij(Ue)jβeβ

R + ν̄αi
L (V †

ν )αimD
ν,ij(Uν)jβνβ

R + H.c.

= gē′jLWµγµ(VeV †
ν )jiν′i

L + me,iē′iLe′iR + mν,iν̄′i
Lν′i

R + H.c. (23)

where V, U diagonalize the mass matrices, and relate the primed (mass)
bases to the unprimed (weak) ones. The lepton analog of the CKM matrix
is U ≡ VeV †

ν , and it is easy to show that it is identical to U defined by
Eq. (22).

Neutrinos are always produced and detected in well-defined flavor eigen-
states. These, however, are not eigenstates of the propagation Hamiltonian.
This mismatch leads to neutrino oscillations. As an example, assume that
there are only two neutrino species, νe and νµ. An electron-type neutrino
can be decomposed in terms of mass eigenstates |ν1⟩ and |ν2⟩ as

|νe⟩ = cos θ|ν1⟩ + sin θ|ν2⟩, (24)

where θ is the mixing angle that parameterizes the mixing matrix U .m It is
clear that the orthogonal muon-type neutrino state is |νµ⟩ = − sin θ|ν1⟩ +
cos θ|ν2⟩.

Assuming that the neutrino propagates as a plane-wave, at time t, the
originally electron-neutrino state evolves into

|ν(t, x⃗)⟩ = cos θe−ip1x|ν1⟩ + sin θe−ip2x|ν2⟩. (25)

The all-important phase factor is given by pix = Eit − p⃗ix⃗ ≃ (Ei − pz,i)L
(i = 1, 2) assuming that the neutrino is ultrarelativistic (always a very

lThe dependency of the β-decay spectrum on the neutrino masses is a function of m2
νe

only in the limit where all neutrino masses are small enough.22
mA 2 × 2 unitary matrix is parameterized by four real parameters. The other three
parameters, however, turn out to be either unphysical or at least unobservable in the
flavor oscillation phenomenon discussed here.
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LWµγµνα

L + ēα
Lme,αβeβ

R + ν̄α
Lmν,αβνβ

R + H.c.

= gēα
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reasonable assumption) and travelling a distance L along the z-direction.
On the other hand, Ei − pz,i = (E2

i − |p⃗|2)/(Ei + pz,i) ≃ m2
i /2Ei ≃ m2

i /2E
where E1 ≃ E2 ≃ E, and Ei ≃ |p⃗i|. Hence

|ν(L)⟩ = cos θe−im2

1
L/2E|ν1⟩ + sin θe−im2

2
L/2E |ν2⟩. (26)

The probability that this state is an electron neutrino is

Pee = |⟨νe|ν(L)⟩|2 ,

=
∣

∣

∣
(cos θ⟨ν1| + sin θ⟨ν2|)

(

cos θe−im2

1
L/2E |ν1⟩ + sin θe−im2

2
L/2E |ν2⟩

)∣

∣

∣

2
,

=
∣

∣

∣
cos2 θe−im2

1
L/2E + sin2 θe−im2

2
L/2E

∣

∣

∣

2
,

= cos4 θ + sin4 θ + 2 sin2 θ cos2 θℜ
(

e−i(m2

2
−m2

1
)L/2E

)

,

= 1 − 4 cos2 θ sin2 θ

(

1 − cos(∆m2L/2E)

2

)

,

= 1 − sin2 2θ sin2

(

∆m2L

4E

)

, (27)

where ∆m2 ≡ m2
2−m2

1 is the neutrino mass-squared difference. The unitary
evolution of the neutrino state guarantees that Pee = Pµµ = 1 − Peµ =
1 − Pµe.

3.1.1. Physics of Two-Flavor Vacuum Oscillations

Eq. (27) dictates that an originally electron-type neutrino has a non-zero
chance of being detected as a muon-type neutrino after it propagates a
finite distance L. Peµ as a function of L for fixed ∆m2 and E is depicted
in Fig. 6. It is, of course, a periodic function of L. Its maximum is given
by sin2 2θ, and occurs every time L = (2n+1)Losc/2, n = 0, 1, 2, . . ., where
Losc is the neutrino oscillation length, defined as

π
L

Losc
≡

∆m2L

4E
= 1.267

(

L

km

)(

∆m2

eV2

)(

GeV

E

)

. (28)

Nontrivial effects are observed under two conditions. First, sin2 2θ should
not be too small. Second, the neutrino oscillation length should not be much
longer than the distance traversed by the neutrino. For particle physics-like
neutrino energies (1 GeV), mass-squared differences of 1 eV2 can be probed
if the baseline is in the kilometer range.

It is useful to illustrate with a few examples. If neutrino oscillations in
vacuum have anything to do with the solar neutrino puzzle (E ∼ 10 MeV,
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PACS numbers: PACS numbers: 14.60.Pq, 96.40.Tv

I. INTRODUCTION

Atmospheric neutrinos are produced from the decays of
particles resulting from interactions of cosmic rays with
Earth’s atmosphere. We have previously reported the results
of a number of atmospheric neutrino observations spanning
energies from 100 MeV to 10 TeV [1, 2, 3, 4]. In each case, a
significant zenith-angle dependent deficit of νµ was observed.
These deficits have been interpreted as evidence for neutrinos
oscillations [5]. If neutrinos have a non-zero mass, then the
probability that a neutrino of energy Eν produced in a weak
flavor eigenstate να will be observed in eigenstate νβ after
traveling a distance L through the vacuum is:

P(να → νβ) = sin2 2θsin2
(1.27∆m2(eV2)L(km)

Eν(GeV)

)

, (1)

where θ is the mixing angle between the mass eigenstates
and the weak eigenstates and ∆m2 is the difference of the
squared mass eigenvalues. This equation is valid in the 2-
flavor approximation. The analysis reported in this paper is
under the assumption of effective 2-flavor neutrino oscilla-
tions, νµ ↔ ντ, which is considered to be dominant in atmo-
spheric neutrino oscillations. Equation 1 is also true in matter
for νµ↔ ντ, but may be modified for oscillation involving νe
which travel through matter. The zenith angle dependence of
the observed deficits results from the variation of L with the
direction of the neutrino. Neutrinos produced directly over-
head travel roughly 15 km to the detector while those pro-
duced directly below traverse the full diameter of the Earth
(13,000 km) before reaching the detector. By measuring the
neutrino event rate over these wide ranges of Eν and L, we
have measured the neutrino oscillation parameters ∆m2 and
sin2 2θ.
Super-Kamiokande (also Super-K or SK) is a 50-kiloton

water Cherenkov detector located deep underground in Gifu
Prefecture, Japan. Atmospheric neutrinos are observed in
Super–K in two ways. At the lowest energies, 100 MeV –
10 GeV, atmospheric neutrinos are observed via their charged-
current interactions with nuclei in the 22.5 kiloton water fidu-
cial mass: ν+N → l+ X . These interactions are classified
as fully-contained (FC) if all of the energy is deposited inside
the inner Super–K detector, or as partially-contained (PC) if a
high energy muon exits the inner detector, depositing energy
in the outer veto region. The neutrino energies that produce
partially-contained events are typically 10 times higher than
those that produce fully-contained events. The Super-K detec-
tor started observation on April, 1996 achieving a 92 kiloton-
yr (1489 live-day) exposure to atmospheric neutrinos through
July, 2001 during the Super-Kamiokande I running period.

∗Present address: Department of Physics, Univ. of Tsukuba, Tsukuba, Ibaraki
305 8577, Japan
†Present address: Department of Physics, Okayama University, Okayama
700-8530, Japan
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FIG. 1: The parent neutrino energy distributions for the fully-
contained, partially-contained, upward stopping-muon and upward
through-going muons samples. Rates for the fully-contained and
partially-contained samples are for interactions in the 22.5 kiloton
fiducial volume. Taken together, the samples span five decades in
neutrino energy.

Neutrinos can also be detected by their interactions with
the rock surrounding the detector. Charged-current νµ in-
teractions with the rock produce high energy muons which
intersect the detector. While these interactions can not be
distinguished from the constant rain of cosmic ray muons
traveling in the downward direction, muons traveling in an
upward direction through the detector must be neutrino in-
duced. Upward-goingmuon events are separated into two cat-
egories: those that come to rest in the detector (upward stop-
ping muons) and those that traverse the entire detector volume
(upward through-goingmuons). The energies of the neutrinos
which produce stopping muons are roughly the same as for
partially-contained events, ∼ 10 GeV. Upward through-going
events, however, are significantly more energetic; the parent
neutrino energy for these events is about 100 GeV on average.
Figure 1 shows the expected number of neutrino events in

each event category as a function of neutrino energy. The
samples taken together span nearly five decades in energy.
This broad range of available energies, in combination with
the variation in neutrino travel distance, makes the combined
data sample well suited for a precise measurement of neutrino
oscillation parameters.
There have been numerous other measurements of atmo-

spheric neutrinos. Kamiokande [6, 7], IMB [8, 9] and
Soudan 2 [10, 11] observed significantly smaller νµ to νe flux
ratios of ∼ 1 GeV atmospheric neutrinos, which were inter-
preted as a signature for neutrino oscillation. The ratio was

Neutrino oscillations and masses



• CKM matrix has three rotation angles and only one CP phase

• PMNS has the same angles and the CP phase, but can have 

two more Majorana phases if they are Majorana. 

CKM versus PMNS 
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Table 14.1: The best-fit values and 3σ allowed ranges of the 3-neutrino oscillation
parameters, derived from a global fit of the current neutrino oscillation data
(from [58]) . For the Dirac phase δ we give the best fit value and the 2σ
allowed range. The values (values in brackets) correspond to m1 < m2 < m3
(m3 < m1 < m2). The definition of ∆m2, which is determined in the global analysis
in [58] is: ∆m2 = m2

3 − (m2
2 + m2

1)/2. Thus, ∆m2 = ∆m2
31 − ∆m2

21/2 > 0, if
m1 < m2 < m3, and ∆m2 = ∆m2

32 + ∆m2
21/2 < 0 for m3 < m1 < m2. We give the

values of ∆m2
31 > 0 for m1 < m2 < m3, and of ∆m2

23 for m3 < m1 < m2, obtained
from those for ∆m2 quoted in [58].

Parameter best-fit 3σ

∆m2
21 [10−5 eV 2] 7.37 6.93 − 7.96

∆m2
31(23) [10−3 eV 2] 2.56 (2.54) 2.45 − 2.69 (2.42 − 2.66)

sin2 θ12 0.297 0.250 − 0.354

sin2 θ23, ∆m2
31(32) > 0 0.425 0.381 − 0.615

sin2 θ23, ∆m2
32(31) < 0 0.589 0.384 − 0.636

sin2 θ13, ∆m2
31(32) > 0 0.0215 0.0190 − 0.0240

sin2 θ13, ∆m2
32(31) < 0 0.0216 0.0190 − 0.0242

δ/π 1.38 (1.31) 2σ: (1.0 - 1.9)

(2σ: (0.92-1.88))

on the Dirac and Majorana CPV phases in the neutrino mixing matrix is available at
present. Thus, the status of CP symmetry in the lepton sector is essentially unknown.
With θ13

∼= 0.15 ̸= 0, the Dirac phase δ can generate CP violating effects in neutrino
oscillations [54,61,62], i.e., a difference between the probabilities of the νl → νl′ and
ν̄l → ν̄l′ oscillations, l ̸= l′ = e, µ, τ . The magnitude of CP violation in νl → νl′ and
ν̄l → ν̄l′ oscillations, l ̸= l′ = e, µ, τ , is determined by [63] the rephasing invariant JCP ,
associated with the Dirac CPV phase in U :

JCP = Im
(

Uµ3 U∗
e3 Ue2 U∗

µ2

)

. (14.9)

It is analogous to the rephasing invariant associated with the Dirac CPV phase in the
CKM quark mixing matrix [64]. In the “standard” parametrization of the neutrino
mixing matrix (Eq. (14.6)), JCP has the form:

JCP ≡ Im (Uµ3 U∗
e3 Ue2 U∗

µ2) =
1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (14.10)

Thus, given the fact that sin 2θ12, sin 2θ23 and sin 2θ13 have been determined
experimentally with a relatively good precision, the size of CP violation effects in
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e conv in Al) > 10�16 or better4 by the end of this decade [21, 22]. Unlike the two rare decays discussed
earlier, searches for µ� ! e� conversion in nuclei are not, naively, expected to hit any experimental
“wall” until conversion rates below 10�18 or lower [12]. Experimental setups sensitive to conversion rates
below 10�17 are currently under serious study both at Fermilab (assuming Project X becomes available)
and J-PARC. Experimentally, in the long-run, it is widely anticipated that µ� ! e� conversion in nuclei
will provide the ultimate sensitivity to CLFV.

2.2 ⌫ Standard Model Expectations

In spite of the fact that we have determined that CLFV must occur, measurements of neutrino oscillation
processes do not allow us to reliably estimate the rate for the various CLFV processes. The reason is
that while neutrino oscillation phenomena depend only on neutrino masses and lepton mixing angles,
the rates for the various CLFV processes depend dramatically on the mechanism behind neutrino masses
and lepton mixing, currently unknown (for recent reviews see, for example, [23]). Di↵erent neutrino
mass-generating Lagrangians lead to very di↵erent rates for CLFV. Some of these will be discussed
briefly here and in Sec. 2.4.

The massive neutrino contribution to CLFV that involves only active neutrinos is absurdly small.
For example [24],

Br(µ ! e�) =
3↵

32⇡

�����
X

i=2,3

U⇤
µiUei

�m2
i1

M2
W

�����

2

< 10�54 , (1)

where U↵i are elements of the neutrino mixing matrix, �m2
ij are the neutrino mass-squared di↵erences,

↵ is the fine-structure constant, and MW is the W -boson mass. Similar ridiculously small rates are
expected for µ ! eee, µ ! e conversion and rare process involving taus. The estimate above applies
to some neutrino mass models, including minimal scenarios with Dirac neutrinos. The reason behind
the tiny branching ratios is well-known. CLFV, as defined above, is a flavor-changing neutral current
process and such processes are subject to the GIM mechanism (or generalizations thereof).

In many neutrino-mass generating scenarios, the active neutrino contribution turns out to be, not
surprisingly, severely subdominant. In the famous seesaw mechanism [25, 26], for example, heavy
neutrino contributions to CLFV are naively expected to be of order those of the light neutrinos, but there
is no theorem that prevents them from being much, much larger. According to [27], for example, current
experimental constraints on the seesaw Lagrangian allow Br(⌧ ! µ�) as large as 10�9, Br(µ ! e�)
as large are 4 ⇥ 10�13, and normalized rates for µ ! e conversion in nuclei that saturate the current
experimental upper bound. For more details, see, for examples, [28].

2.3 Some Model Independent Considerations

Independent from the mechanism behind neutrino masses, it is often speculated that the rates for
di↵erent CLFV processes are, perhaps, just beneath current experimental upper bounds. The reason
is we suspect, for several reasons, that there are new degrees of freedom beyond those in the Standard
Model. We also suspect that some of those have masses around 1 TeV. Since lepton-flavor numbers are
known not to be good quantum numbers, it is generically expected that virtual processes involving the
new degrees of freedom will mediate, at some order in perturbation theory, CLFV.

Some concrete new physics scenarios will be briefly discussed in Sec. 2.4. Here we discuss two
e↵ective Lagrangians5 that mediate CLFV processes involving muons aiming at illustrating how searches
for CLFV are sensitive to new physics, and how di↵erent CLFV channels compare with one another.

4Some proposals involve other nuclei, including 48Ti.
5Parts of this discussion were first presented in writing in [21, 13].

5
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Reaction Present limit C.L. Experiment Year Reference

µ+ ! e+� < 4.2⇥ 10�13 90% MEG at PSI 2016 [49]
µ+ ! e+e�e+ < 1.0⇥ 10�12 90% SINDRUM 1988 [50]
µ�Ti ! e�Ti † < 6.1⇥ 10�13 90% SINDRUM II 1998 [51]
µ�Pb ! e�Pb † < 4.6⇥ 10�11 90% SINDRUM II 1996 [52]
µ�Au ! e�Au † < 7.0⇥ 10�13 90% SINDRUM II 2006 [54]
µ�Ti ! e+Ca⇤ † < 3.6⇥ 10�11 90% SINDRUM II 1998 [53]
µ+e� ! µ�e+ < 8.3⇥ 10�11 90% SINDRUM 1999 [55]
⌧ ! e� < 3.3⇥ 10�8 90% BaBar 2010 [56]
⌧ ! µ� < 4.4⇥ 10�8 90% BaBar 2010 [56]
⌧ ! eee < 2.7⇥ 10�8 90% Belle 2010 [57]
⌧ ! µµµ < 2.1⇥ 10�8 90% Belle 2010 [57]
⌧ ! ⇡0e < 8.0⇥ 10�8 90% Belle 2007 [58]
⌧ ! ⇡0µ < 1.1⇥ 10�7 90% BaBar 2007 [59]
⌧ ! ⇢0e < 1.8⇥ 10�8 90% Belle 2011 [60]
⌧ ! ⇢0µ < 1.2⇥ 10�8 90% Belle 2011 [60]

⇡0 ! µe < 3.6⇥ 10�10 90% KTeV 2008 [61]
K0

L ! µe < 4.7⇥ 10�12 90% BNL E871 1998 [62]
K0

L ! ⇡0µ+e� < 7.6⇥ 10�11 90% KTeV 2008 [61]
K+ ! ⇡+µ+e� < 1.3⇥ 10�11 90% BNL E865 2005 [63]
J/ ! µe < 1.5⇥ 10�7 90% BESIII 2013 [64]
J/ ! ⌧e < 8.3⇥ 10�6 90% BESII 2004 [65]
J/ ! ⌧µ < 2.0⇥ 10�6 90% BESII 2004 [65]
B0 ! µe < 2.8⇥ 10�9 90% LHCb 2013 [68]
B0 ! ⌧e < 2.8⇥ 10�5 90% BaBar 2008 [69]
B0 ! ⌧µ < 2.2⇥ 10�5 90% BaBar 2008 [69]
B ! Kµe ‡ < 3.8⇥ 10�8 90% BaBar 2006 [66]
B ! K⇤µe ‡ < 5.1⇥ 10�7 90% BaBar 2006 [66]
B+ ! K+⌧µ < 4.8⇥ 10�5 90% BaBar 2012 [67]
B+ ! K+⌧e < 3.0⇥ 10�5 90% BaBar 2012 [67]
B0

s ! µe < 1.1⇥ 10�8 90% LHCb 2013 [68]
⌥(1s) ! ⌧µ < 6.0⇥ 10�6 95% CLEO 2008 [70]

Z ! µe < 7.5⇥ 10�7 95% LHC ATLAS 2014 [71]
Z ! ⌧e < 9.8⇥ 10�6 95% LEP OPAL 1995 [72]
Z ! ⌧µ < 1.2⇥ 10�5 95% LEP DELPHI 1997 [73]
h ! eµ < 3.5⇥ 10�4 95% LHC CMS 2016 [74]
h ! ⌧µ < 2.5⇥ 10�3 95% LHC CMS 2017 [75]
h ! ⌧e < 6.1⇥ 10�3 95% LHC CMS 2017 [75]

Table II. – Limits for the branching ratio of charged lepton flavour violating processes of leptons,
mesons, and heavy bosons. More extensive lists of B-meson and ⌧ CLFV decays (including all
hadronic modes) can be found in [76, 77]. †Rate normalised to the muon capture rate by the
nucleus, see Eq. (99). ‡B-charge averaged modes.
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Reaction Present limit Expected Limit Reference Experiment

µ+ ! e+� < 4.2⇥ 10�13 5⇥ 10�14 [316] MEG II

µ+ ! e+e�e+ < 1.0⇥ 10�12 10�16 [46] Mu3e

µ�Al ! e�Al † < 6.1⇥ 10�13 10�17 [321, 324] Mu2e, COMET

µ�Si/C ! e�Si/C † � 5⇥ 10�14 [282] DeeMe

⌧ ! e� < 3.3⇥ 10�8 5⇥ 10�9 [339] Belle II

⌧ ! µ� < 4.4⇥ 10�8 10�9 [339] ”

⌧ ! eee < 2.7⇥ 10�8 5⇥ 10�10 [339] ”

⌧ ! µµµ < 2.1⇥ 10�8 5⇥ 10�10 [339] ”

⌧ ! e had < 1.8⇥ 10�8 ‡ 3⇥ 10�10 [339] ”

⌧ ! µ had < 1.2⇥ 10�8 ‡ 3⇥ 10�10 [339] ”

had ! µe < 4.7⇥ 10�12 § 10�12 [340] NA62

h ! eµ < 3.5⇥ 10�4 3⇥ 10�5 ¶ [341] HL-LHC

h ! ⌧µ < 2.5⇥ 10�3 3⇥ 10�4 ¶ [341] ”

h ! ⌧e < 6.1⇥ 10�3 3⇥ 10�4 ¶ [341] ”

Table XII. – Present and future limits for selected CLFV processes. †Rate normalised to the
muon capture rate by the nucleus, see Eq. (99). ‡Best limits from ⌧ ! e⇢0 and ⌧ ! µ⇢0

respectively. §Best limit from K0

L decay. ¶Reference [341] quotes the branching ratio for which
one can make a 2� or 5�observation; we use the number of expected signal and background events
in there to infer 95% C.L. sensitivities on the three channels, which turn out to be compatible
with the scaling for the square root of the relative luminosity - 3000 fb�1 assumed in [341] vs
20 [74] or 36 [75] fb�1.

models that can account for the (g � 2)µ discrepancy, unless they feature a very peculiar
flavour structure. Evidence that new physics is responsible for the apparently missing
contribution to (g � 2)µ would then give us high expectations for a similarly striking
discovery at CLFV search experiments (this conclusion is analogous to that we drew in
section 7 regarding possible lepton flavour non-universal e↵ects in B decays).

Finally, as a summary of the presented topics we would like to propose in Table XII a
subset of the processes reported in Table II with indicated the limit expected in the near
future, i.e. within 5 � 10 years. On the experimental side, the message that we tried to
convey throughout our discussion is that the most sensitive searches require the design
and realization of dedicated experiments as well as a deep understanding of the processes
and of their backgrounds.

⇤ ⇤ ⇤
LC is pleased to thank his many friends and collaborators, from which he learnt about

the topics discussed here, in particular: A. Crivellin, J. Jones-Perez, A. Masiero, T. Ota,
P. Paradisi, S. Pokorski, A. Romanino, S. Vempati, O. Vives, and R. Ziegler. GS would
like to thank A. M. Baldini, C. Bemporad, F. Cei, L. Galli, M. Grassi, D. Nicolò and
A. Papa for the useful discussions on the experimental aspects of CLFV searches, some
of which are ongoing since more than fifteen years!
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After integrating out heavy degrees of freedom, and after electroweak symmetry breaking, CLFV
is mediated by e↵ective operators of dimension five and higher. We first concentrate on the following
e↵ective Lagrangian6

LCLFV =
mµ

(+ 1)⇤2
µ̄R�µ⌫eLF

µ⌫ + h.c.



(1 + )⇤2
µ̄L�µeL

�
ūL�

µuL + d̄L�
µdL

�
+ h.c. . (2)

The subscripts L,R indicate the chirality of the di↵erent Standard Model fermion fields, F µ⌫ is the
photon field strength and mµ is the muon mass. The coe�cients of the two types of operators are
parameterized by two independent constants: the dimensionful ⇤ parameter (with dimensions of mass),
which is meant to represent the e↵ective mass scale of the new degrees of freedom, and the dimensionless
parameter , which governs the relative size of the two di↵erent types of operators. The magnetic-
moment type operator in the first line of Eq. (2) directly mediates µ ! e� and mediates µ ! eee and
µ ! e conversion in nuclei at order ↵. The four-fermion operators in the second line of Eq. (2), on the
other hand, mediate µ ! e conversion at the leading order and µ ! e�, µ ! eee at the one-loop level.
For  ⌧ 1, the dipole-type operator dominates CLFV phenomena, while for  � 1 the four-fermion
operators are dominant.

The sensitivity to ⇤ as a function of  for µ ! e� and µ ! e conversion e↵orts is depicted in Fig. 2.
For  ⌧ 1, an experiment sensitive to Br(µ ! e�) > 10�13 will probe ⇤ values less than 2500 TeV,
while for  � 1 an experiment sensitive to Br(µ ! e conv in 27Al) > 10�16 will probe ⇤ values less
than 7000 TeV.

Relevant information can be extracted from Fig. 2. CLFV already probes ⇤ values close to 1000 TeV
and next-generation experiments will start to probe ⇤ ⇠ 104 TeV and beyond. Furthermore, a µ !
e conversion experiment is “guaranteed” to outperform a µ ! e� experiment for any value of  as
long as it is a couple of orders of magnitude more sensitive. Since, as already discussed, it appears
very challenging to perform a µ ! e� experiment sensitive to branching ratios smaller than 10�14,
µ ! e conversion searches (not expected to hit any “wall” before normalized rates around at most
10�18), are the more e↵ective way of pursuing CLFV after the on-going MEG experiment is done
analyzing its data.

Similarly, we can ask what are the consequences for CLFV if the new physics is best captured by
the following “leptons-only” e↵ective Lagrangian:

LCLFV =
mµ

(+ 1)⇤2
µ̄R�µ⌫eLF

µ⌫ + h.c.



(1 + )⇤2
µ̄L�µeL (ē�

µe) + h.c. . (3)

Similar to the dimension-six operators in the second line of Eq. (2), the dimension-six operator in the
second line of Eq. (3) mediates µ ! eee at the tree level and µ ! e�, µ ! e conversion at the one-
loop level. Similar to Eq. (2), the dimensionless parameter  determines whether the dipole-like or the
four-fermion interaction is dominant when it comes to CLFV.

The sensitivity to ⇤ as a function of  for µ ! e� and µ ! eee e↵orts is depicted in Fig. 3. Here,
for  � 1, an experiment sensitive to Br(µ ! eee) > 10�15 will probe ⇤ values less than 1800 TeV. As
in the example depicted in Fig. 2, we note that a µ ! eee experiment is guaranteed to outperform a
µ ! e� experiment, for any value of , as long as it is a few hundred times more sensitive. Whether
this can be realistically achieved in future experiments is still under investigation [12, 19].

6The most general e↵ective Lagragian includes several other terms [14]. The subsets included in Eqs. (2,3), however,
are su�cient to illustrate all issues discussed here. Modulo extreme constructive/destructive interference e↵ects among
di↵erent e↵ective operators, the points made here remain valid.
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Figure 2: Sensitivity of a µ ! e conversion in 27Al experiment that can probe a normalized
capture rate of 10�16 and 10�18, and of a µ ! e� search that is sensitive to a branching ratio
of 10�13 and 10�14, to the new physics scale ⇤ as a function of , as defined in Eq. (2). Also
depicted is the currently excluded region of this parameter space.

A model independent comparison between the reach of µ ! eee and µ ! e conversion in nuclei is
a lot less straight forward. If the new physics is such that the dipole-type operator is dominant ( ⌧ 1
in Figures 2 and 3), it is easy to see that near-future prospects for µ ! e conversion searches are
comparable to those for µ ! eee, assuming both can reach the 10�16 level. µ ! e conversion searches
will ultimately dominate, assuming these can reach beyond 10�17, and assuming µ ! eee searches
“saturate” at the 10�16 level. Under all other theoretical circumstances, keeping in mind that  and ⇤
in Eqs. (2,3) are not the same, it is impossible to unambiguously compare the two CLFV probes.

The discussions above also serve to illustrate another “feature” of searches for CLFV violation.
In the case of a positive signal, the amount of information regarding the new physics is limited. For
example, a positive signal in a µ ! e conversion experiment does not allow one to measure either ⇤ or
 but only a function of the two. In order to learn more about the new physics, one needs to combine
information involving the rate of a particular CLFV process with other observables. These include other
CLFV observables (e.g., a positive signal in µ ! e� and µ ! eee would allow one to measure both

7
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Figure 4. – Schematic representation of the contribution to processes such as `i ! `j`k`k and
µ ! e conversion arising from a flavour-violating dipole operator and, conversely, to `i ! `j�
from 4-fermion operators.

by more than two orders of magnitudes, in order to provide a more stringent constraint
than the one currently given by µ ! e�. This is due to the fact that, if the dipole
operator dominates, the rates of µ ! eee and µ N ! e N are suppressed by a factor of
order ↵ with respect to µ ! e� [121], as it can be intuitively understood from Figure
4(12):

BR(µ ! eee) ' ↵

3⇡

✓
log

m2
µ

m2
e

� 3

◆
⇥ BR(µ ! e�) ,(40)

CR(µ N ! e N) ' ↵ ⇥ BR(µ ! e�) .(41)

Therefore the MEG bound on BR(µ ! e�) translates – within this scenario – to a
limit to the above observables at the 10�15 level. Conversely, a measurement of the
rates of µ ! eee and µ N ! e N much above that value would clearly signal that the
source of CLFV is not the dipole operator Qe� , rather some of the 4-fermion operators
listed in Table IV(13). This would rule out large classes of models, such as the typical
supersymmetric frameworks that we will discuss in section 5. A graphical representation
of present and forecast limits on the coe�cient of the dipole operators from µ ! e
observables is shown in Figure 5.

The above considerations are based on the rather unrealistic hypothesis that new
physics e↵ects are encoded in a single operator. Although this can be approximately true
in certain scenarios, yet the coe�cients of the operators in Table IV are in general not
independent due to radiative e↵ects. Such e↵ects – summarised by the renormalisation

(12) For full calculations of the µ ! e conversion rates in di↵erent nuclei, see [109, 122, 123].
(13) As a matter of fact, there are several new physics models where such operators arise at the
tree level, thus with much larger coe�cients than the dipoles that can only be loop induced.
Some examples will be mentioned in section 6.
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Majorana Neutrino mass

• Three UV-completions for dim-5 (𝛥L = 2) Weinberg operator 

(LH)(LH)/𝛬, dubbed as Type-I, Type-II and Type-III seesaw 

mechanism:



• Lepton number is violated if 0𝜈ββ is observed and SM neutrinos 

contains a Majorana component. It would wash out not only L and but 

also B in light of the sphalerons

Neutrinoless Double Beta Decay (0𝜈ββ)

Deppisch et al. 1208.0721



• If the origin of neutrino masses arises from a LNV mechanism 

such as heavy Majorana neutrinos, then both LFV and LNV can 

in principle occur  

• In this case, sizable LFV usually leads to (too) large light 

neutrino masses 

• In this work, we discuss a special effective operator (made of 

singlets only) which will not induce large neutrino masses but 

with sizable 𝜇$ → 𝑒'

LFV and LNV
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Induced 0𝜈ββ by 𝑂.
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FIG. 2: Feynman diagrams contributing to 0⌫�� from the dimension-nine all-singlets operator Oee
s at the tree level (left), two-loop

level (middle), and four-loop level (right). The blob represents the e↵ective operator while the ⇥ represents the Higgs-boson
vacuum expectation value.

where y are the di↵erent charged-lepton and quark Yukawa couplings, ⇤ and g are the e↵ective scale and couplings of
O↵�

s , respectively, and we assumed third-generation quarks, as these are associated to the largest Yukawa couplings. Note
that the ↵,� indices in Eq. (II.4) are not summed over.

Neutrino oscillation data constrain only the neutrino mass-squared di↵erences. Nonetheless, one can use the atmo-
spheric and the solar mass-squared di↵erences to set lower bounds on the masses of the heaviest and the next-to-heaviest
neutrinos. The atmospheric mass-squared di↵erence, for example, dictates that at least one neutrino has to be heav-
ier than

p
|�m2

32

| ' 0.05 eV [28]. On the other hand, cosmic surveys limit the sum of masses of the neutrinos to
be . 0.12 eV [29–31]. For concreteness, we assume that the largest element of the neutrino mass matrix lies between
m⌫ 2 (0.05 � 0.5) eV. In this case, Eq. (II.4) implies that the e↵ective scale of O↵�

s [19] is

⇤ 2 (100 MeV � 1 GeV) . (II.5)

Fig. 2 depicts the tree-level, two-loop and four-loop contributions to 0⌫�� from Oee
s . The half-life for such a decay is

estimated as [19]

T
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The e↵ective Q-value of the decay process can be extracted from analyses of the data from the KamLAND-Zen experiment
[32] and turns out to be O(10 MeV). The factor of (1/q2) comes from the neutrino propagator and is typically of order
100 MeV, the inverse distance-scale between nucleons. Combining these, our estimate for the half-life as a function of ⇤ is
depicted in the left panel of Fig. 3. For O(1) couplings, the current lifetime lower-bound – ⇤ & 5 TeV – and the neutrino
mass requirements – Eq. (II.5) – are incompatible. This strongly suggests that if there is new physics that manifests itself
via Oee

s at the tree level, this new physics is not responsible for generating the observed nonzero neutrino masses.
Fig. 4 depicts the tree-level, two-loop and four-loop contributions to µ� ! e+-conversion from Oeµ

s . In order to
estimate Rµ�e+ , as defined in Eq. (I.1), we estimate the muon capture rate, as outlined in [19], to be

�µ� /
✓
GFp
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0
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!
Q2 , (II.7)

where Z
e↵

is the e↵ective atomic number, a
0

the Bohr radius, and Q the estimated typical energy of the process, of order
the muon mass mµ. While estimating Rµ�e+ , the term in the second parentheses in Eq. (II.7) cancels out in the ratio,
yielding

Rµ�e+ = |geµ|2Q
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where y are the di↵erent charged-lepton and quark Yukawa couplings, ⇤ and g are the e↵ective scale and couplings of
O↵�

s , respectively, and we assumed third-generation quarks, as these are associated to the largest Yukawa couplings. Note
that the ↵,� indices in Eq. (II.4) are not summed over.

Neutrino oscillation data constrain only the neutrino mass-squared di↵erences. Nonetheless, one can use the atmo-
spheric and the solar mass-squared di↵erences to set lower bounds on the masses of the heaviest and the next-to-heaviest
neutrinos. The atmospheric mass-squared di↵erence, for example, dictates that at least one neutrino has to be heav-
ier than
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| ' 0.05 eV [28]. On the other hand, cosmic surveys limit the sum of masses of the neutrinos to
be . 0.12 eV [29–31]. For concreteness, we assume that the largest element of the neutrino mass matrix lies between
m⌫ 2 (0.05 � 0.5) eV. In this case, Eq. (II.4) implies that the e↵ective scale of O↵�

s [19] is

⇤ 2 (100 MeV � 1 GeV) . (II.5)

Fig. 2 depicts the tree-level, two-loop and four-loop contributions to 0⌫�� from Oee
s . The half-life for such a decay is
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The e↵ective Q-value of the decay process can be extracted from analyses of the data from the KamLAND-Zen experiment
[32] and turns out to be O(10 MeV). The factor of (1/q2) comes from the neutrino propagator and is typically of order
100 MeV, the inverse distance-scale between nucleons. Combining these, our estimate for the half-life as a function of ⇤ is
depicted in the left panel of Fig. 3. For O(1) couplings, the current lifetime lower-bound – ⇤ & 5 TeV – and the neutrino
mass requirements – Eq. (II.5) – are incompatible. This strongly suggests that if there is new physics that manifests itself
via Oee

s at the tree level, this new physics is not responsible for generating the observed nonzero neutrino masses.
Fig. 4 depicts the tree-level, two-loop and four-loop contributions to µ� ! e+-conversion from Oeµ

s . In order to
estimate Rµ�e+ , as defined in Eq. (I.1), we estimate the muon capture rate, as outlined in [19], to be
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where Z
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is the e↵ective atomic number, a
0

the Bohr radius, and Q the estimated typical energy of the process, of order
the muon mass mµ. While estimating Rµ�e+ , the term in the second parentheses in Eq. (II.7) cancels out in the ratio,
yielding
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FIG. 3: Left: The lifetime associated to 0⌫��, T0⌫�� , as a function of the cuto↵ scale ⇤, from the dimension-nine all-singlets
operator Oee

s . For values ⇤ . 104 TeV the lifetime is dominated by the tree-level contribution and scales like / ⇤10, whereas for
larger values of ⇤, the lifetime is dominated by the four-loop contribution and scales / ⇤2. The current experimental bound from
KamLAND-Zen is depicted as a horizontal black line. Right: The normalized rate Rµ�e+ of muon to positron conversion as a
function of the cuto↵ scale ⇤, from the dimension-nine all-singlets operator Oµe

s . For scales ⇤ . 102 TeV, the tree-level contribution
dominates and the the rate scales like / ⇤�10. For scales ⇤ & 104 TeV the four-loop contribution is most relevant and the rate
scales like / ⇤�2. Between those regions, the two-loop contribuion is most important and the rate scale like / ⇤�6. The current
experimental bound from SINDRUM II and the sensitivity of Mu2e are depicted as a horizontal black and purple lines, respectively.
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FIG. 4: Feynman diagrams contributing to µ� ! e+-conversion from the dimension-nine all-singlets operator Oµe
s at the tree level

(left), two-loop level (middle), and four-loop level (right). The blob represents the e↵ective operator while the ⇥ represents the
Higgs-boson vacuum expectation value.

The normalized conversion rate for this process as a function of ⇤ is depicted in Fig. 3 along with the current bounds on
the process from the SINDRUM II collaboration [33], and the expected Mu2e sensitivity, Eq. (I.2). The current bound
from SINDRUM II implies that ⇤ & 10 GeV for O(1) couplings. Again, the neutrino mass requirements are inconsistent
with the existing µ� ! e+-conversion bounds.

If all g↵� are of the same magnitude, current constraints on ⇤ from 0⌫�� – ⇤ & 1 TeV for gee of order one – would
translate into unobservable rates for µ� ! e+-conversion in nuclei. However, there are no model-independent reasons to
directly relate, e.g., gµe to gee, hence the bounds from 0⌫�� need not apply directly to searches for µ� ! e+-conversion.
Model-dependent considerations are required in order to explore possible relations between gee and gµe. On the the other
hand, observable rates for µ� ! e+-conversion require ⇤ . 100 GeV and hence new particles with masses around (or
below) the weak scale. It is natural to suspect that models associated to such small e↵ective scales are also vulnerable
to lepton-number conserving, low-energy observables, especially searches for CLFV. As argued in the introduction, these
phenomena can only be addressed within UV-complete models, which we introduce and discuss in the next section.
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FIG. 5: Topologies that realize the all-singlets dimension-nine operator Os at tree level. Topology 1 (left) involves only new bosons
while Topology 2 (right) requires both new fermions and bosons. In both topologies, the bosons can be scalars or vectors.

TABLE I: Quantum numbers of all possible pairs of the SU(2)L gauge singlet Standard Model fermions `c, uc, dc.

Pairs (Lorentz) Representation under
�
SU(3)

C

, SU(2)
L

�
U(1)Y

`c`c (scalar) (1, 1)
1

⇥ (1, 1)
1
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2

`cuc (scalar) (1, 1)
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1/3
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�1/3 ⇥ (3, 1)

�1/3 = (3a, 1)
�2/3 + (6s, 1)

�2/3

III. ULTRAVIOLET COMPLETIONS OF THE EFFECTIVE OPERATOR O↵�
s

Here we discuss tree-level UV-completions of the all-singlets dimension-nine operator O↵�
s , introduced in the previous

section, Eq. (II.2). As all fields in the e↵ective operator are fermions, all new interactions involving SM fields are either
Yukawa or gauge interactions, i.e, they are all 3-point vertices. Furthermore, relevant interactions involving only new-
physics fields are at most also 3-point vertices. This is due to the fact that the operator in question has six fermions in
the final state and we are only interested in tree-level realizations of O↵�

s . Since only 3-point vertices are possible, there
are only two topologies that lead to O↵�

s at the tree level [34, 35]:

1. All new particles are bosons. Each boson couples to a pair of SM fermions, and three new-physics bosons define
a new interaction vertex. This is depicted in the left panel of Fig. 5. The new-physics bosons can be scalars or
vectors.

2. All new interactions involve one boson and two fermions. The new particles are bosons and fermions and SM fields
either couple pair-wise with a new-physics boson or couple to a new-physics boson and a new-physics fermion. This
is depicted in the right panel of Fig. 5. Again, the new-physics bosons can be scalars or vectors.

In order to systematically analyze the di↵erent internal particles that can appear in Fig. 5, we determine the quantum
numbers of pairs and triplets of the external SM fermions of interest. The di↵erent combinations of pairs of fermions
determine the possible quantum numbers of the bosons in the internal lines in Fig. 5. Similarly, di↵erent combinations
of triplets of fermions determine the quantum numbers of the potential new fermions in the internal fermion line in
Fig. 5(right).

Table I lists all possible ways of pairing up any two SU(2)L-singlet SM fermions.§ Generation indices, for both leptons
and quarks, have been omitted. Topology 1 can be realized by choosing three bosons with the same quantum numbers
as these pairs, keeping in mind that there are two fermions of each type – uc, dc, `c – in O↵�

s . For bilinear combinations
of the same generation of quarks, only products symmetric in the color indices, i.e., forming a 6 or 6 of SU(3)c, exist
since, e.g., (uc)↵i(uc)j↵ = �(uc)i↵(uc)↵j = (uc)↵j(uc)i↵, where ↵ is the dummy Lorentz index and (i, j) are the SU(3)c
indices. Here, we will be concentrating on new-physics involving first-generation quarks, as we are interested in models

§ Excluding left-handed antineutrinos ⌫c. We will comment on those later in this section.
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Yukawa or gauge interactions, i.e, they are all 3-point vertices. Furthermore, relevant interactions involving only new-
physics fields are at most also 3-point vertices. This is due to the fact that the operator in question has six fermions in
the final state and we are only interested in tree-level realizations of O↵�

s . Since only 3-point vertices are possible, there
are only two topologies that lead to O↵�

s at the tree level [34, 35]:

1. All new particles are bosons. Each boson couples to a pair of SM fermions, and three new-physics bosons define
a new interaction vertex. This is depicted in the left panel of Fig. 5. The new-physics bosons can be scalars or
vectors.

2. All new interactions involve one boson and two fermions. The new particles are bosons and fermions and SM fields
either couple pair-wise with a new-physics boson or couple to a new-physics boson and a new-physics fermion. This
is depicted in the right panel of Fig. 5. Again, the new-physics bosons can be scalars or vectors.

In order to systematically analyze the di↵erent internal particles that can appear in Fig. 5, we determine the quantum
numbers of pairs and triplets of the external SM fermions of interest. The di↵erent combinations of pairs of fermions
determine the possible quantum numbers of the bosons in the internal lines in Fig. 5. Similarly, di↵erent combinations
of triplets of fermions determine the quantum numbers of the potential new fermions in the internal fermion line in
Fig. 5(right).

Table I lists all possible ways of pairing up any two SU(2)L-singlet SM fermions.§ Generation indices, for both leptons
and quarks, have been omitted. Topology 1 can be realized by choosing three bosons with the same quantum numbers
as these pairs, keeping in mind that there are two fermions of each type – uc, dc, `c – in O↵�

s . For bilinear combinations
of the same generation of quarks, only products symmetric in the color indices, i.e., forming a 6 or 6 of SU(3)c, exist
since, e.g., (uc)↵i(uc)j↵ = �(uc)i↵(uc)↵j = (uc)↵j(uc)i↵, where ↵ is the dummy Lorentz index and (i, j) are the SU(3)c
indices. Here, we will be concentrating on new-physics involving first-generation quarks, as we are interested in models

§ Excluding left-handed antineutrinos ⌫c. We will comment on those later in this section.
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TABLE II: Quantum numbers of all the possible triplets of SU(2)L gauge singlet Standard Model fermions `c, uc, dc (with at most
two identical fields).

Triplets Representation under
�
SU(3)

C

, SU(2)
L

�
U(1)Y

`c`cuc (1, 1)
1

⇥ (1, 1)
1

⇥ (3, 1)
�2/3 = (3, 1)

4/3

`c`cdc (1, 1)
1

⇥ (1, 1)
1

⇥ (3, 1)
�1/3 = (3, 1)

5/3

`cucuc (1, 1)
1

⇥ (3, 1)
�2/3 ⇥ (3, 1)

�2/3 = (3a, 1)
�1/3 + (6s, 1)

�1/3

`cdc dc (1, 1)
1

⇥ (3, 1)
�1/3 ⇥ (3, 1)

�1/3 = (3a, 1)
1/3 + (6s, 1)

1/3

`cucdc (1, 1)
1

⇥ (3, 1)
�2/3 ⇥ (3, 1)

�1/3 = (1, 1)
0

+ (8, 1)
0

ucucdc (3, 1)
�2/3 ⇥ (3, 1)

�2/3 ⇥ (3, 1)
�1/3 =

⇥
(3a, 1)

�4/3 + (6s, 1)
�4/3

⇤ ⇥ (3, 1)
�1/3 =

(3, 1)
�5/3 + (6, 1)

�5/3 + (3, 1)
�5/3 + (15, 1)

�5/3

ucdc dc (3, 1)
�2/3 ⇥ (3, 1)

�1/3 ⇥ (3, 1)
�1/3 = (3, 1)

�2/3 ⇥ ⇥
(3a, 1)

�2/3 + (6s, 1)
�2/3

⇤
=

(3, 1)
�4/3 + (6, 1)

�4/3 + (3, 1)
�4/3 + (15, 1)

�4/3

that mediate µ� ! e+-conversion at the tree level (left panel of Fig. 4). Unless otherwise noted, we will not consider
models that “mix” di↵erent generations of the same quark-flavor.

There are five di↵erent “minimal” realizations of Topology 1. Two of them involve heavy scalar bosons only, while
the remaining three require new-physics vector and scalar bosons. Of course, one can consider “less-minimal” scenarios
where one includes bosons with di↵erent quantum numbers associated to the same fermion-pair, e.g., the combination
ucdc can connect to vector bosons in two di↵erent SU(3)c representations.

Similarly, Table II lists all possible combinations of three SU(2)L-singlet SM fermions. The di↵erent new-physics
fermions that can make up Topology 2 must have the same quantum numbers as the combinations listed in the table.
This list is exhaustive, and to get all possible diagrams, one needs to consider all allowed, distinct permutations of the
triplets. In order to realize Topology 2, for each such combination, one needs to consider the possible ways of arranging
fermion pairs, listed in Table I. It can be shown that this yields eighteen di↵erent “minimal” realizations of Topology 2,
not considering the di↵erent representations for the same combination of SM fermions.

Next, we want to ensure that, at the tree level, the di↵erent new-physics scenarios lead to the all-singlets operator but
not to other dimension-nine (or lower dimensional) LNV operators. New particles with the same quantum numbers as
some of the combinations in Table I can also couple to pairs of SM fermions that contain the SU(2)L-doublets L,Q. For
example, the pair `cuc transforms like a (3, 1)

1/3. A scalar that couples to this pair of SM fermions can also couple to LQ,
since the latter has identical quantum numbers. These new bosons would lead to, along with the all-singlets operator,
other six-fermion operators, including (LQ)(LQ)(dc dc) (for a complete list, see Tables I, II and III in [19]). Unlike the
all-singlets operator, all other dimension-nine operators saturate the constraints associated to non-zero neutrino masses
for ⇤ values that translate into tiny rates for µ� ! e+-conversion, see Figure 7 in [19].

In order to systematically address this issue, we list all the relevant SM fermion pairs that transform in the same way
in Table III. The pairs relevant for O↵�

s are shown in red. From the table, one can see that a new particle that couples to,
e.g., `c with uc or dc can also couple to LQ, and so on. The table reveals that there are two avenues for avoiding unwanted
couplings. One is to have one of the new bosons couple to the pair `c`c, which is not degenerate, quantum-number-wise,
with any other pair of SM fermions. The other is to add a new fermion and a new boson such that `c couples to them
in Topology 2. The reason for this is that all other pairings involving `c have an unwanted “match,” see Table III.
This extra requirement drastically reduces the total number of minimal models for the two topologies, and allows us to
write down all possible UV completions with no more than three new particles. The final allowed combinations and the
corresponding new particles are listed in Table IV. The list is exhaustive, and all possible UV completions of O↵�

s at the
tree level can be implemented with a subset of less than or equal to three of these particles.

It is also important to consider whether new interactions would materialize if neutrino SU(2)L-singlet fields, ⌫c, were
also present. Pairings that include ⌫c are also included in Table III. Given all constraints discussed above, there are no
new couplings involving ⌫c other than the neutrino Yukawa coupling and ⌫c Majorana masses for new-physics models
that do not contain the vector Cµ ⇠ (1, 1)

1

field. In models that contain Cµ, one need also consider the interaction term
`c�µ⌫ciCµ. We return to the left-handed antineutrinos and the mechanism behind neutrino masses in Sec. VI.

In the following subsections we list all the di↵erent models. We divide them into di↵erent categories. Some models
contain new vector bosons, others contain only new-physics scalars or fermions. Since all new particles need to be
heavy, including potential new vector bosons, no-vectors models are easier to analyze since, as is well-known, consistent
quantum field theories with massive vector bosons require extra care. There are, altogether, eight models: four with
and four without new massive vector fields. We discuss the no-vectors models first. We will also broadly distinguish
models based on whether they also lead to the violation of baryon-number conservation and whether any flavor-structure
naturally arises.

A. No-vectors Models

Here, all no-vectors models are discussed in turn. Models are named according to the new-physics field content, see
Table IV. Explicitly, they are (1) ⇣�⌃, (2) ��⌃, (3)  ��, and (4) �⌃�. The first three realize O↵�

s via topology 2

6

FIG. 5: Topologies that realize the all-singlets dimension-nine operator Os at tree level. Topology 1 (left) involves only new bosons
while Topology 2 (right) requires both new fermions and bosons. In both topologies, the bosons can be scalars or vectors.

TABLE I: Quantum numbers of all possible pairs of the SU(2)L gauge singlet Standard Model fermions `c, uc, dc.

Pairs (Lorentz) Representation under
�
SU(3)

C

, SU(2)
L

�
U(1)Y

`c`c (scalar) (1, 1)
1

⇥ (1, 1)
1

= (1, 1)
2

`cuc (scalar) (1, 1)
1

⇥ (3, 1)
�2/3 = (3, 1)

1/3

`cdc (vector) (1, 1)
1

⇥ (3, 1)
�1/3 = (3, 1)

2/3

ucuc (scalar) (3, 1)
�2/3 ⇥ (3, 1)

�2/3 = (3a, 1)
�4/3 + (6s, 1)

�4/3

ucdc (vector) (3, 1)
�2/3 ⇥ (3, 1)

�1/3 = (1, 1)
�1

+ (8, 1)
�1

dc dc (scalar) (3, 1)
�1/3 ⇥ (3, 1)

�1/3 = (3a, 1)
�2/3 + (6s, 1)

�2/3

III. ULTRAVIOLET COMPLETIONS OF THE EFFECTIVE OPERATOR O↵�
s

Here we discuss tree-level UV-completions of the all-singlets dimension-nine operator O↵�
s , introduced in the previous

section, Eq. (II.2). As all fields in the e↵ective operator are fermions, all new interactions involving SM fields are either
Yukawa or gauge interactions, i.e, they are all 3-point vertices. Furthermore, relevant interactions involving only new-
physics fields are at most also 3-point vertices. This is due to the fact that the operator in question has six fermions in
the final state and we are only interested in tree-level realizations of O↵�

s . Since only 3-point vertices are possible, there
are only two topologies that lead to O↵�

s at the tree level [34, 35]:

1. All new particles are bosons. Each boson couples to a pair of SM fermions, and three new-physics bosons define
a new interaction vertex. This is depicted in the left panel of Fig. 5. The new-physics bosons can be scalars or
vectors.

2. All new interactions involve one boson and two fermions. The new particles are bosons and fermions and SM fields
either couple pair-wise with a new-physics boson or couple to a new-physics boson and a new-physics fermion. This
is depicted in the right panel of Fig. 5. Again, the new-physics bosons can be scalars or vectors.

In order to systematically analyze the di↵erent internal particles that can appear in Fig. 5, we determine the quantum
numbers of pairs and triplets of the external SM fermions of interest. The di↵erent combinations of pairs of fermions
determine the possible quantum numbers of the bosons in the internal lines in Fig. 5. Similarly, di↵erent combinations
of triplets of fermions determine the quantum numbers of the potential new fermions in the internal fermion line in
Fig. 5(right).

Table I lists all possible ways of pairing up any two SU(2)L-singlet SM fermions.§ Generation indices, for both leptons
and quarks, have been omitted. Topology 1 can be realized by choosing three bosons with the same quantum numbers
as these pairs, keeping in mind that there are two fermions of each type – uc, dc, `c – in O↵�

s . For bilinear combinations
of the same generation of quarks, only products symmetric in the color indices, i.e., forming a 6 or 6 of SU(3)c, exist
since, e.g., (uc)↵i(uc)j↵ = �(uc)i↵(uc)↵j = (uc)↵j(uc)i↵, where ↵ is the dummy Lorentz index and (i, j) are the SU(3)c
indices. Here, we will be concentrating on new-physics involving first-generation quarks, as we are interested in models

§ Excluding left-handed antineutrinos ⌫c. We will comment on those later in this section.
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TABLE III: Pairs of Standard Model fermions that share the same gauge quantum numbers. The pairs of interest here are in red.
The pair `c`c does not transform like any other pair of SM fields; the same is true of the color-symmetric pairs of ucuc and dcdc.

Fermion pairs transforming as
�
SU(3)

C

, SU(2)
L

�
U(1)Y

LL, `c ⌫c (1, 1)
�1

scalar
dcuc, `c⌫c (1, 1)

�1

vector
`cuc, ucdc, Q2, LQ, dc⌫c (3, 1)

1/3 scalar
ucdc, QQ (6, 1)

1/3 scalar
dcdc, uc ⌫c (3, 1)

2,3 scalar
dc`c, LQ, uc⌫c (3, 1)

2/3 vector
ucuc, dc `c (3, 1)

�4/3 scalar
⌫c⌫c, ⌫c ⌫c (1, 1)

0

scalar
LL, QQ, `c`c, dcdc, ucuc, ⌫c⌫c (1, 1)

0

vector
QQ, dcdc, ucuc (8, 1)

0

vector

TABLE IV: All new particles required for all di↵erent tree-level realizations of the all-singlets dimension-nine operator O↵�
s ,

according to the restrictions discussed in the text. All particles are SU(2)L singlets. The fermions  , ⇣, and � come with a
partner ( c, ⇣c, and �c respectively), not listed. We don’t consider fields that would couple to the antisymmetric combination of
same-flavor quarks since these cannot couple quarks of the same generation.

New particles
�
SU(3)

C

, SU(2)
L

�
U(1)Y

Spin

� ⌘ (lc lc) (1, 1)
�2

scalar
⌃ ⌘ (uc uc) (6, 1)

4/3 scalar
� ⌘ (dc dc) (6, 1)

�2/3 scalar
C ⌘ (uc dc) (1, 1)

1

, (8, 1)
1

vector
 ⌘ (uc lc lc) (3, 1)

4/3 fermion
⇣ ⌘ (dc lc lc) (3, 1)

�5/3 fermion
� ⌘ (lc uc uc) (6, 1)

�1/3 fermion
N ⌘ (lc dc uc) (1, 1)

0

, (8, 1)
0

fermion

(Fig. 5(right)) while the last one realizes O↵�
s via topology 1 (Fig. 5(left)).

1. Model ⇣�⌃

Here, the SM particle content is augmented by a couple of vector-like fermions ⇣ ⌘ (3, 1)
�5/3 and ⇣c ⌘ (3, 1)

5/3, the
color-singlet scalar � ⇠ (1, 1)

�2

, and the colored scalar ⌃ ⇠ (6, 1)
4/3. The most general renormalizable Lagrangian is

L⇣�⌃

= L
SM

+ L
kin

+ y
�↵� �`c↵`

c
� + y

⌃u ⌃ucuc + y
�⇣c �⇣cdc + y

⌃⇣ ⌃⇣dc + m⇣ ⇣⇣
c + V (�,⌃, 0) + h.c. , (III.1)

where L
SM

is the SM Lagrangian, L
kin

contains the kinetic-energy terms for the new particles, and V (�,⌃, 0) is the most
general scalar potential involving the scalars �,⌃, written out explicitly in Appendix A. By design, lepton number is
violated by two units but it is conserved in the limit where any of the new Yukawa couplings vanishes. On the other hand,
baryon number is conserved. In units where the quarks have baryon-number one, ⌃ can be assigned baryon-number +2,
⇣, ⇣c baryon-number �1,+1, respectively, and � baryon-number zero.

It is easy to check that this model realizes O↵�
s via topology 2 (Fig. 5(right)) and

g↵�
⇤5

⌘ y
�↵� y⇤

�⇣c y⇤
⌃⇣ y⌃u

M2

�

M2

⌃

m⇣
. (III.2)

Here, y
�↵� controls the lepton-flavor structure of the model. µ� ! e+-conversion rates are proportional to |y

�eµ|2, while
those for 0⌫�� are proportional to |y

�ee|2.
The new-physics states will also mediate CLFV phenomena, sometimes at the tree level. In what follows, we write

down the e↵ective operators that give rise to di↵erent CLFV processes, and estimate bounds on the e↵ective scales of
these operators. The CLFV observables of interest are:

1. µ± ! e±e±e⌥ decay: The e↵ective Lagrangian giving rise to this decay, generated at the tree level, is

Lµ!3e =
y
�eµ y⇤

�ee

M2

�

(µcec) (ec ec) , (III.3)

Ø Avoid inducing other LNV dim-9 operator with new particles
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TABLE III: Pairs of Standard Model fermions that share the same gauge quantum numbers. The pairs of interest here are in red.
The pair `c`c does not transform like any other pair of SM fields; the same is true of the color-symmetric pairs of ucuc and dcdc.

Fermion pairs transforming as
�
SU(3)

C

, SU(2)
L

�
U(1)Y

LL, `c ⌫c (1, 1)
�1

scalar
dcuc, `c⌫c (1, 1)

�1

vector
`cuc, ucdc, Q2, LQ, dc⌫c (3, 1)

1/3 scalar
ucdc, QQ (6, 1)

1/3 scalar
dcdc, uc ⌫c (3, 1)

2,3 scalar
dc`c, LQ, uc⌫c (3, 1)

2/3 vector
ucuc, dc `c (3, 1)

�4/3 scalar
⌫c⌫c, ⌫c ⌫c (1, 1)

0

scalar
LL, QQ, `c`c, dcdc, ucuc, ⌫c⌫c (1, 1)

0

vector
QQ, dcdc, ucuc (8, 1)

0

vector

TABLE IV: All new particles required for all di↵erent tree-level realizations of the all-singlets dimension-nine operator O↵�
s ,

according to the restrictions discussed in the text. All particles are SU(2)L singlets. The fermions  , ⇣, and � come with a
partner ( c, ⇣c, and �c respectively), not listed. We don’t consider fields that would couple to the antisymmetric combination of
same-flavor quarks since these cannot couple quarks of the same generation.

New particles
�
SU(3)

C

, SU(2)
L

�
U(1)Y

Spin

� ⌘ (lc lc) (1, 1)
�2

scalar
⌃ ⌘ (uc uc) (6, 1)

4/3 scalar
� ⌘ (dc dc) (6, 1)

�2/3 scalar
C ⌘ (uc dc) (1, 1)

1

, (8, 1)
1

vector
 ⌘ (uc lc lc) (3, 1)

4/3 fermion
⇣ ⌘ (dc lc lc) (3, 1)

�5/3 fermion
� ⌘ (lc uc uc) (6, 1)

�1/3 fermion
N ⌘ (lc dc uc) (1, 1)

0

, (8, 1)
0

fermion

(Fig. 5(right)) while the last one realizes O↵�
s via topology 1 (Fig. 5(left)).

1. Model ⇣�⌃

Here, the SM particle content is augmented by a couple of vector-like fermions ⇣ ⌘ (3, 1)
�5/3 and ⇣c ⌘ (3, 1)

5/3, the
color-singlet scalar � ⇠ (1, 1)

�2

, and the colored scalar ⌃ ⇠ (6, 1)
4/3. The most general renormalizable Lagrangian is

L⇣�⌃

= L
SM

+ L
kin

+ y
�↵� �`c↵`

c
� + y

⌃u ⌃ucuc + y
�⇣c �⇣cdc + y

⌃⇣ ⌃⇣dc + m⇣ ⇣⇣
c + V (�,⌃, 0) + h.c. , (III.1)

where L
SM

is the SM Lagrangian, L
kin

contains the kinetic-energy terms for the new particles, and V (�,⌃, 0) is the most
general scalar potential involving the scalars �,⌃, written out explicitly in Appendix A. By design, lepton number is
violated by two units but it is conserved in the limit where any of the new Yukawa couplings vanishes. On the other hand,
baryon number is conserved. In units where the quarks have baryon-number one, ⌃ can be assigned baryon-number +2,
⇣, ⇣c baryon-number �1,+1, respectively, and � baryon-number zero.

It is easy to check that this model realizes O↵�
s via topology 2 (Fig. 5(right)) and

g↵�
⇤5

⌘ y
�↵� y⇤

�⇣c y⇤
⌃⇣ y⌃u

M2

�

M2

⌃

m⇣
. (III.2)

Here, y
�↵� controls the lepton-flavor structure of the model. µ� ! e+-conversion rates are proportional to |y

�eµ|2, while
those for 0⌫�� are proportional to |y

�ee|2.
The new-physics states will also mediate CLFV phenomena, sometimes at the tree level. In what follows, we write

down the e↵ective operators that give rise to di↵erent CLFV processes, and estimate bounds on the e↵ective scales of
these operators. The CLFV observables of interest are:

1. µ± ! e±e±e⌥ decay: The e↵ective Lagrangian giving rise to this decay, generated at the tree level, is

Lµ!3e =
y
�eµ y⇤

�ee

M2

�

(µcec) (ec ec) , (III.3)



Induced 𝜇$ → 𝑒'

Model 𝜁ΦΣ



Various constraints from CLFV:

Ø 𝜇 → 3 e

Ø 𝜇 → e 𝛾

Ø 𝜇$ → 𝑒$

Model 𝜁ΦΣ



More leptonic constraints:

Ø 𝜇+ e- → 𝜇- e+

Ø e+ e- → 𝜇+ 𝜇-

Ø (𝑔 − 2)9

Model 𝜁ΦΣ



Baryon constraints:

Ø 𝑛 ↔ <𝑛

Ø BNV with LNV

Model 𝜒ΔΣ



Summary plot



• Stringent CLFV constraints can be switched off or suppressed if 

(𝐿9−𝐿@) is (approximately) conserved

• BNV limits can be avoided if baryon number is conserved by 

underlying UV theories

• Collider bounds can be weakened if mediator masses and/or 

couplings become small 

Summaries



• 𝑂"
/0 (ℓ/B ℓ0

B𝑢B𝑢B 𝑑B 𝑑B) is a special operator which consists of 

𝑆𝑈(2)G singlets only

• It can yield sizable 𝜇$ → 𝑒' without generating too large 

neutrino masses

• Both of CLFV and BNV constraints can be avoided by imposing 

proper local/gauge symmetry while collider constraints of lepton-

flavor-conserving can be alleviated by small couplings and/or 

masses

Conclusions


