

Accessible Lepton-Number-Violating Models and Negligible Neutrino Masses

CP³ Origins Wei-Chih Huang 22.10.2019 National Centre for Nuclear Research Warsaw

André de Gouvêa, WCH, Johannes König, Manibrata Sen, arXiv:1907.02541

Outline

Neutrino oscillations, masses and PMNS (Pontecorvo-Maki-

Nakagawa-Sakata) matrix

- Charged-lepton flavor violation (CLFV) in the SM with a (very brief) experimental review
- Sizable CLFV from New physics
- Connections to LNV (lepton number violation)

Outline

- Effective operator O_s with sizable $\mu^- \rightarrow e^+$ but w/o large m_{ν}
- Exhaustive tree-level UV models
- Various experimental constraints
- Conclusions

CKM (Cabibbo-Kobayashi-Maskawa) matrix

$$\begin{aligned} & \mathcal{Q}_{L} = \begin{pmatrix} \mathcal{U} \\ d \end{pmatrix}_{L} , \mathcal{U}_{R} , d_{R} \\ & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} \\ & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} \\ & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} \\ & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} \\ & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} & \mathcal{L}_{A} &$$

CKM (Cabibbo-Kobayashi-Maskawa) matrix

$$\Rightarrow \int_{M_{0}} -\frac{y_{i}^{\prime d}}{\sqrt{2}} - \frac{\sqrt{d_{i}}}{\sqrt{2}} - \frac{\sqrt{d_{i$$

 ∠H> breaks SU(2)L
 ⇒ UL, dL transform differently between flavor and mass states.

Neutrino oscillations and masses

➢ In the SM, there is no tree-level CLFV

$$E_L = \begin{pmatrix} \mathcal{V}_L \\ \mathcal{C}_L \end{pmatrix}$$
, \mathcal{C}_R

$$\begin{aligned} \mathcal{L}_{Ye} \sim -\mathcal{J}_{ij}^{e} (\overline{E_{Li}} \cdot H) e_{Rj} - \mathcal{J}_{ij}^{V} (\overline{E_{Li}} \cdot H^{\dagger}) \mathcal{V}_{Rj} \\ e_{L}^{i} = U_{e}^{ij} e_{L}^{ij} e_{L}^{ij} e_{Rj}^{i} = V_{e}^{ij} e_{L}^{ij} \\ \mathcal{L}_{me} \sim -\frac{\mathcal{J}_{i}^{e}}{\sqrt{2}} \overline{e_{Li}^{i}} e_{Ri} + h.C. \\ \Rightarrow \mathcal{L}_{W} \sim \overline{e_{Li}^{i}} \mathcal{S}^{m} (U_{e}^{\dagger})_{ij} \mathcal{V}_{Lj} \mathcal{W}_{m} \\ \overline{\mathcal{V}}_{MNS} ?? \end{aligned}$$

Neutrino oscillations and masses

The lepton mixing matrix in the SM is unphysical if neutrinos are massless or degenerate in mass!

But one can vedetine $\chi \rightarrow (Ve) \chi'_{L}$ to remove (1)et) in Lw * If neutrinos are massive and non-degenerate. $\Rightarrow \mathcal{L}_{W} \sim \mathcal{P}_{L}^{\prime} \mathcal{Y}^{m} (\mathcal{V}e^{\dagger} \mathcal{V}_{V}) \mathcal{V}_{L}^{\prime} \mathcal{W}_{M}$ PMNS

UNIVERSITY OF SOUTHERN DENMARK

Neutrino oscillations and masses

$$|\nu_{e}\rangle = \cos \theta |\nu_{1}\rangle + \sin \theta |\nu_{2}\rangle, \qquad |\nu(t,\vec{x})\rangle = \cos \theta e^{-ip_{1}x} |\nu_{1}\rangle + \sin \theta e^{-ip_{2}x} |\nu_{2}\rangle$$

$$p_{i}x = E_{i}t - \vec{p}_{i}\vec{x} \simeq (E_{i} - p_{z,i})L$$

$$E_{i} - p_{z,i} = (E_{i}^{2} - |\vec{p}|^{2})/(E_{i} + p_{z,i}) \simeq m_{i}^{2}/2E_{i} \simeq m_{i}^{2}/2E$$

$$|\nu(L)\rangle = \cos \theta e^{-im_{1}^{2}L/2E} |\nu_{1}\rangle + \sin \theta e^{-im_{2}^{2}L/2E} |\nu_{2}\rangle$$

$$P_{ee} = |\langle\nu_{e}|\nu(L)\rangle|^{2},$$

$$= \left|(\cos \theta \langle\nu_{1}| + \sin \theta \langle\nu_{2}|)\left(\cos \theta e^{-im_{1}^{2}L/2E}|\nu_{1}\rangle + \sin \theta e^{-im_{2}^{2}L/2E}|\nu_{2}\rangle\right)\right|^{2},$$

$$= \left|\cos^{2} \theta e^{-im_{1}^{2}L/2E} + \sin^{2} \theta e^{-im_{2}^{2}L/2E}\right|^{2},$$

$$= \cos^{4} \theta + \sin^{4} \theta + 2\sin^{2} \theta \cos^{2} \theta \Re \left(e^{-i(m_{2}^{2} - m_{1}^{2})L/2E}\right),$$

$$= 1 - 4\cos^{2} \theta \sin^{2} \theta \left(\frac{1 - \cos(\Delta m^{2}L/2E)}{2}\right),$$

$$= 1 - \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right),$$
(27)

Andre de Gouvea, hep-ph/0411274

Neutrino oscillations and masses

CKM versus PMNS

• CKM matrix has three rotation angles and only one CP phase

 PMNS has the same angles and the CP phase, but can have two more Majorana phases if they are Majorana.

Neutrino oscillations and masses

https://neutrinos.fnal.gov/mysteries/mass-ordering/

Parameter	best-fit	3σ
$\Delta m_{21}^2 \ [10^{-5} \text{ eV}^2]$	7.37	6.93 - 7.96
$\Delta m^2_{31(23)} \ [10^{-3} \text{ eV}^2]$	2.56(2.54)	$2.45 - 2.69 \ (2.42 - 2.66)$
$\ln^2 \theta_{12}$	0.297	0.250 - 0.354
$ in^2 \theta_{23}, \Delta m^2_{31(32)} > 0 $	0.425	0.381 - 0.615
$ in^2 \theta_{23}, \Delta m^2_{32(31)} < 0 $	0.589	0.384 - 0.636
$ in^2 \theta_{13}, \Delta m^2_{31(32)} > 0 $	0.0215	0.0190 - 0.0240
$ in^2 \theta_{13}, \Delta m^2_{32(31)} < 0 $	0.0216	0.0190 - 0.0242
$5/\pi$	1.38(1.31)	2σ : (1.0 - 1.9)
		$(2\sigma: (0.92-1.88))$

Loop-induced CLFV in SM

$$\overline{\mathcal{M}}_{L} \mathcal{O}^{MV} \mathcal{C}_{R} F_{MV} + (L \leftrightarrow R)$$

Amplitude
$$\sim \frac{3}{i=1} U_{mi}^{*} \frac{i}{P^{2} - m_{i}^{2}} U_{ei}$$

 $\sim \frac{3}{i=2} U_{mi}^{*} \frac{\Delta m_{i}^{2}}{P^{2}} U_{ei}$
 $* U_{mi}^{*} U_{ei} = -(U_{m2} U_{e2} + U_{m3} U_{e3})$

$$\begin{split} \mathrm{Br}(\mu \to e \gamma) &= \frac{3 \alpha}{32 \pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 < 10^{-54} \end{split}$$

 Hopelessly small!

e.g. A. de Gouvea, P. Vogel, 1303.4097

Reaction	Present limit	C.L.	Experiment	Year	Reference
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016	[49]
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988	[50]
μ^{-} Ti $\rightarrow e^{-}$ Ti [†]	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998	[51]
$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996	[52]
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006	[54]
$\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}^{*}^{\dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998	[53]
$\mu^+ e^- \rightarrow \mu^- e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999	[55]
$\tau \to e \gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010	[56]
$ au o \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010	[56]
$\tau \rightarrow eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010	[57]
$ au o \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010	[57]
$ au o \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007	[58]
$ au o \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007	[59]
$ au o ho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011	[60]
$ au o ho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011	[60]
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008	[61]
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998	[62]
$K_L^0 o \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008	[61]
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005	[63]
$J/\psi \to \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013	[64]
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004	[65]
$J/\psi ightarrow au\mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004	[65]
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013	[68]
$B^0 \to \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008	[69]
$B^0 \to \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008	[69]
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006	[66]
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006	[66]
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012	[67]
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012	[67]
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013	[68]
$\Upsilon(1s)\to\tau\mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008	[70]
$\overline{Z \to \mu e}$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014	[71]
$Z \to \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995	[72]
$Z ightarrow au \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997	[73]
$h ightarrow e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016	[74]
$h ightarrow au \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017	[75]
$h \rightarrow \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017	[75]

L. Calibbi, G. Signorelli, 1709.00294

SDU &

Reaction	Present limit	Expected Limit	Reference	Experiment
$\mu^+ o e^+ \gamma$	$< 4.2 \times 10^{-13}$	5×10^{-14}	[316]	MEG II
$\mu^+ \to e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	10^{-16}	[46]	Mu3e
$\mu^{-} \mathrm{Al} \rightarrow e^{-} \mathrm{Al}^{\dagger}$	$< 6.1 \times 10^{-13}$	10^{-17}	[321, 324]	Mu2e, COMET
$\mu^-{\rm Si/C} \rightarrow e^-{\rm Si/C}^{\dagger}$	—	5×10^{-14}	[282]	DeeMe
$\tau \to e\gamma$	$< 3.3 \times 10^{-8}$	5×10^{-9}	[339]	Belle II
$\tau \to \mu \gamma$	$< 4.4 \times 10^{-8}$	10^{-9}	[339]	"
$\tau \rightarrow eee$	$< 2.7 \times 10^{-8}$	5×10^{-10}	[339]	"
$ au o \mu \mu \mu$	$< 2.1 \times 10^{-8}$	5×10^{-10}	[339]	"
$\tau \to e \text{ had}$	$< 1.8 \times 10^{-8}$ ‡	3×10^{-10}	[339]	"
$\tau \to \mu$ had	$< 1.2 \times 10^{-8}$ [‡]	3×10^{-10}	[339]	"
had $\rightarrow \mu e$	$< 4.7 \times 10^{-12}$ §	10^{-12}	[340]	NA62
$h \to e \mu$	$< 3.5 \times 10^{-4}$	3×10^{-5} ¶	[341]	HL-LHC
$h ightarrow au \mu$	$< 2.5 \times 10^{-3}$	3×10^{-4} ¶	[341]	"
$h \rightarrow \tau e$	$< 6.1 \times 10^{-3}$	3×10^{-4} ¶	[341]	"

L. Calibbi, G. Signorelli, 1709.00294

 $\mu \rightarrow e \gamma \text{ versus } \mu \rightarrow eee$

L. Calibbi, G. Signorelli, 1709.00294

A. de Gouvea, P. Vogel, 1303.4097

CLFV in **BSM**

- Two Higgs doublets models
- SUSY
- Majorana neutrinos
- (Many others)

Majorana Neutrino mass

Three UV-completions for dim-5 (ΔL = 2) Weinberg operator (LH)(LH)/Λ, dubbed as Type-I, Type-II and Type-III seesaw mechanism:

Neutrinoless Double Beta Decay ($0\nu\beta\beta$)

 Lepton number is violated if 0νββ is observed and SM neutrinos contains a Majorana component. It would wash out not only L and but also B in light of the sphalerons

LFV and LNV

- If the origin of neutrino masses arises from a LNV mechanism such as heavy Majorana neutrinos, then both LFV and LNV can in principle occur
- In this case, sizable LFV usually leads to (too) large light neutrino masses
- In this work, we discuss a special effective operator (made of singlets only) which will not induce large neutrino masses but with sizable $\mu^- \rightarrow e^+$

$$\mathcal{L} \supset \frac{g}{\Lambda^{d-4}} \mathcal{O}^d + h.c. \qquad \mathcal{O}_s^{\alpha\beta} = \ell_\alpha^c \ell_\beta^c u^c u^c \overline{d^c} \, \overline{d^c}$$

 $m_{\alpha\beta} = \frac{g_{\alpha\beta}}{\Lambda} \frac{y_{\alpha}y_{\beta}(y_t y_b v)^2}{(16\pi^2)^4}$

Induced $0\nu\beta\beta$ by $O_S^{\alpha\beta}$

Induced $\mu^- \rightarrow e^+$ by $O_{\varsigma}^{\alpha\beta}$

 $\left| R_{\mu^{-}e^{+}} = |g_{e\mu}|^{2} \frac{Q^{6}}{\Lambda^{2}} \left| \left(\frac{G_{F}}{\sqrt{2}} \right)^{2} \left(\frac{1}{q^{2}} \right)^{2} \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} y_{e} v^{2}}{(16\pi^{2})^{4}} \right)^{2} + \frac{1}{q^{2}} \left(\frac{y_{t} y_{b} y_{\mu} v}{(16\pi^{2})^{2} \Lambda^{2}} \right)^{2} + \left(\frac{\sqrt{2}}{G_{F}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} y_{e} v^{2}}{(16\pi^{2})^{4}} \right)^{2} + \frac{1}{q^{2}} \left(\frac{y_{t} y_{b} y_{\mu} v}{(16\pi^{2})^{2} \Lambda^{2}} \right)^{2} + \left(\frac{\sqrt{2}}{G_{F}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} y_{e} v^{2}}{(16\pi^{2})^{4}} \right)^{2} + \frac{1}{q^{2}} \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{2} \Lambda^{2}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} + \frac{1}{q^{2}} \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{2} \Lambda^{2}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} + \frac{1}{q^{2}} \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{2} \Lambda^{2}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{b}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right|^{2} \left| \left(\frac{y_{t}^{2} y_{\mu} v}{(16\pi^{2})^{4}} \right)^{2$ $\frac{1}{\Lambda^8}$

Tree-level topology

TABLE I: Quantum numbers of all possible pairs of the $SU(2)_L$ gauge singlet Standard Model fermions $\ell^c, u^c, \overline{d^c}$.

Pairs (Lorentz)	Representation under $(SU(3)_C, SU(2)_L)_{U(1)_Y}$
$ \begin{array}{c} \ell^{c}\ell^{c} \ (\text{scalar}) \\ \ell^{c}u^{c} \ (\text{scalar}) \\ \ell^{c}\overline{d^{c}} \ (\text{vector}) \\ u^{c}u^{c} \ (\text{scalar}) \\ u^{c}\overline{d^{c}} \ (\text{vector}) \\ \overline{d^{c}} \ \overline{d^{c}} \ (\text{scalar}) \end{array} $	$(1,1)_{1} \times (1,1)_{1} = (1,1)_{2}$ $(1,1)_{1} \times (\overline{3},1)_{-2/3} = (\overline{3},1)_{1/3}$ $(1,1)_{1} \times (3,1)_{-1/3} = (3,1)_{2/3}$ $(\overline{3},1)_{-2/3} \times (\overline{3},1)_{-2/3} = (3_{a},1)_{-4/3} + (\overline{6}_{s},1)_{-4/3}$ $(\overline{3},1)_{-2/3} \times (3,1)_{-1/3} = (1,1)_{-1} + (8,1)_{-1}$ $(3,1)_{-1/3} \times (3,1)_{-1/3} = (\overline{3}_{a},1)_{-2/3} + (\overline{6}_{s},1)_{-2/3}$

Topology II

TABLE II: Quantum numbers of all the possible triplets of $SU(2)_L$ gauge singlet Standard Model fermions $\ell^c, u^c, \overline{d^c}$ (with at most two identical fields).

Triplets	Representation under $(SU(3)_C, SU(2)_L)_{U(1)_X}$
$\ell^c \ell^c u^c$	$(1,1)_1 \times (1,1)_1 \times (\overline{3},1)_{-2/3} = (\overline{3},1)_{4/3}$
$\ell^c \ell^c \overline{d^c}$	$(1,1)_1 \times (1,1)_1 \times (3,1)_{-1/3} = (3,1)_{5/3}$
$\ell^c u^c u^c$	$(1,1)_1 \times (\overline{3},1)_{-2/3} \times (\overline{3},1)_{-2/3} = (3_a,1)_{-1/3} + (\overline{6}_s,1)_{-1/3}$
$\ell^c \overline{d^c} \overline{d^c}$	$(1,1)_1 \times (3,1)_{-1/3} \times (3,1)_{-1/3} = (\overline{3}_a,1)_{1/3} + (6_s,1)_{1/3}$
$\ell^c u^c \overline{d^c}$	$(1,1)_1 \times (\overline{3},1)_{-2/3} \times (3,1)_{-1/3} = (1,1)_0 + (8,1)_0$
$u^{c}u^{c}\overline{d^{c}}$	$(\overline{3},1)_{-2/3} \times (\overline{3},1)_{-2/3} \times (\overline{3},1)_{-1/3} = [(3_a,1)_{-4/3} + (\overline{6}_s,1)_{-4/3}] \times (3,1)_{-1/3} =$
	$(\overline{3},1)_{-5/3} + (6,1)_{-5/3} + (\overline{3},1)_{-5/3} + (\overline{15},1)_{-5/3}$
$u^c \overline{d^c} \overline{d^c}$	$(\overline{3},1)_{-2/3} \times (3,1)_{-1/3} \times (3,1)_{-1/3} = (\overline{3},1)_{-2/3} \times [(\overline{3}_a,1)_{-2/3} + (6_s,1)_{-2/3}] =$
	$(3,1)_{-4/3} + (\overline{6},1)_{-4/3} + (3,1)_{-4/3} + (15,1)_{-4/3}$

Bilinear fermion operators

TABLE III: Pairs of Standard Model fermions that share the same gauge quantum numbers. The pairs of interest here are in red. The pair $\ell^c \ell^c$ does not transform like any other pair of SM fields; the same is true of the color-symmetric pairs of $u^c u^c$ and $d^c d^c$.

Fermion pairs transforming as	$(SU(3)_{\rm C}, SU(2)_{\rm L})_{\rm U(1)_{\rm Y}}$
$LL, \overline{\ell^c} \overline{\nu^c}$	$(1,1)_{-1}$ scalar
$\overline{d^c}u^c, \overline{\ell^c} u^c$	$(1,1)_{-1}$ vector
$\ell^{c} u^{c}, \overline{u^{c}} \overline{d^{c}}, Q^{2}, \overline{L} \overline{Q}, d^{c} \nu^{c}$	$(\overline{3},1)_{1/3}$ scalar
$\left \overline{u^c}\overline{d^c}, QQ\right $	$(6,1)_{1/3}$ scalar
$d^{c}d^{c}, \overline{u^{c}} \overline{ u^{c}}$	$(3,1)_{2,3}$ scalar
$\overline{d^c}\ell^c, \overline{L}Q, \overline{u^c} u^c$	$(3,1)_{2/3}$ vector
$u^{c}u^{c}, \overline{d^{c}}\overline{\ell^{c}}$	$(3,1)_{-4/3}$ scalar
$ u^c \nu^c, \overline{\nu^c} \overline{\nu^c} $	$(1,1)_0$ scalar
$\left L\overline{L}, Q\overline{Q}, \ell^c \overline{\ell^c}, d^c \overline{d^c}, u^c \overline{u^c}, \overline{\nu^c} \nu^c \right $	$(1,1)_0$ vector
$\left Q \overline{Q}, d^c \overline{d^c}, u^c \overline{u^c} \right $	$(8,1)_0$ vector

Avoid inducing other LNV dim-9 operator with new particles

New particle contents

TABLE IV: All new particles required for all different tree-level realizations of the all-singlets dimension-nine operator $\mathcal{O}_s^{\alpha\beta}$, according to the restrictions discussed in the text. All particles are $SU(2)_L$ singlets. The fermions ψ , ζ , and χ come with a partner (ψ^c , ζ^c , and χ^c respectively), not listed. We don't consider fields that would couple to the antisymmetric combination of same-flavor quarks since these cannot couple quarks of the same generation.

New particles	$(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}})_{\mathrm{U}(1)_{\mathrm{Y}}}$	Spin
$\Phi \equiv (\overline{l^c} \ \overline{l^c})$ $\Sigma \equiv (\overline{u^c} \ \overline{u^c})$ $\Delta \equiv (\overline{d^c} \ \overline{d^c})$ $C \equiv (\overline{u^c} \ d^c)$ $\psi \equiv (u^c \ l^c \ l^c)$ $\zeta \equiv (d^c \ \overline{l^c} \ \overline{l^c})$ $\chi \equiv (l^c \ u^c \ u^c)$ $N \equiv (l^c \ \overline{d^c} \ u^c)$	$(1,1)_{-2} (6,1)_{4/3} (6,1)_{-2/3} (1,1)_1, (8,1)_1 (\overline{3},1)_{4/3} (\overline{3},1)_{-5/3} (\overline{6},1)_{-1/3} (1,1)_0, (8,1)_0$	scalar scalar scalar vector fermion fermion fermion fermion

Model $\zeta \Phi \Sigma$

$$\mathcal{L}_{\zeta\Phi\Sigma} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{kin}} + y_{\Phi\alpha\beta} \, \Phi \ell^c_{\alpha} \ell^c_{\beta} + y_{\Sigma u} \, \Sigma u^c u^c$$
$$+ y_{\Phi\zeta^c} \, \Phi \zeta^c d^c + y_{\Sigma\zeta} \, \Sigma \zeta d^c + m_{\zeta} \, \zeta \zeta^c + V(\Phi, \Sigma, 0) + \mathrm{h.c.} \,,$$

Model $\zeta \Phi \Sigma$

Various constraints from CLFV:

Model $\zeta \Phi \Sigma$

More leptonic constraints:

Model $\chi\Delta\Sigma$

 $\mathcal{L}_{\chi\Delta\Sigma} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + y_{\Sigma u} \Sigma u^c u^c + y_{\Delta d} \Delta d^c d^c + y_{\Delta\chi} \Delta \overline{\chi} \,\overline{\chi} + y_{\Delta\chi^c} \,\Delta \chi^c \chi^c + y_{\Sigma\alpha} \,\overline{\Sigma} \chi^c \ell^c_{\alpha} + y_{\Delta\alpha} \,\Delta \chi \ell^c_{\alpha}$

Baryon constraints:

$$\blacktriangleright n \leftrightarrow \overline{n} \qquad \qquad \mathcal{L}_{n-\overline{n}} = \frac{y_{\Sigma u} y_{\Delta d}^2 m_{\Sigma \Delta}}{M_{\Delta}^4 M_{\Sigma}^2} (u^c d^c d^c)^2 \qquad \qquad \qquad \Lambda \gtrsim 350 \text{ TeV}$$

Summary plot

Summaries

• Stringent CLFV constraints can be switched off or suppressed if

 $(L_{\mu}-L_{e})$ is (approximately) conserved

BNV limits can be avoided if baryon number is conserved by

underlying UV theories

 Collider bounds can be weakened if mediator masses and/or couplings become small

Conclusions

- $O_s^{\alpha\beta} \left(\ell_{\alpha}^c \ell_{\beta}^c u^c u^c \, \overline{d^c} \, \overline{d^c} \right)$ is a special operator which consists of $SU(2)_L$ singlets only
- It can yield sizable $\mu^- \rightarrow e^+$ without generating too large neutrino masses
- Both of CLFV and BNV constraints can be avoided by imposing proper local/gauge symmetry while collider constraints of leptonflavor-conserving can be alleviated by small couplings and/or masses